How to Support Your Mitochondria for Better Brain Health

how-to-support-your-mitochondria-for-better-brain-health-mental-boost-increase-optimize-restore-repair-function-depression-fatigue-energy-foods-supplements-naturally-biogenesis

It’s becoming increasingly clear that chronic dysfunction of mitochondria is another underlying factor that contributes to poor brain function and mental illness. 

Mitochondria are unique structures within every cell of your body. You have trillions and trillions of them, making up approximately 10% of your total body weight. They are considered the “powerhouses of the cell,” generating most of the energy in your body by converting your nutrition into adenosine-5’- triphosphate (ATP). ATP is your body’s main source of cellular fuel. You are constantly using it, and your brain needs enough of it to work properly (106-107). 

Along with your gut bacteria, your mitochondria are critically important and need to be supported to overcome depression and anxiety, and reach optimal brain and mental health.

Mitochondria are especially abundant in your brain cells and involved in many important biological processes in the brain, including the regulation of free radicals and neurotransmitters. In fact, monoamine oxidase (MAO), the enzyme responsible for the metabolism of monoamine neurotransmitters, is localized within the outer mitochondrial membrane (91-93). 

So not surprisingly, numerous studies show that there is a correlation between impaired mitochondrial functioning in the brain and many psychiatric and neurodegenerative diseases, including bipolar disorder, major depressive disorder, multiple sclerosis, Parkinson’s disease, Alzheimer's disease, chronic fatigue syndrome, schizophrenia, psychosis, panic disorder, social anxiety, generalized anxiety and other stress-related diseases (82-90, 94-100, 102-104). 

Yes, you read that right. Every single one of those conditions has been linked to mitochondrial dysfunction. In fact, many researchers are convinced that mitochondrial dysfunction is involved in almost every chronic disease (108-110). 

Mitochondria dysfunction decreases ATP energy production and increases oxidative stress, which are commonly found in the brains of people suffering from brain and mental health disorders. Cognitive symptoms of mitochondrial dysfunction can also include impairments in attention, executive function and memory. Unfortunately, a number of psychiatric drugs damage the mitochondria and worsen dysfunction (105). 

But luckily, there are ways to halt and reverse mitochondrial decay.

Below are a number of strategies I’ve used over the years to support my mitochondria and you can use them to regain optimal brain and mental health.

Eat Nutrient-Dense, Whole Foods

Not surprisingly, eating lots of fresh, nutrient-dense whole foods is the most impactful action you can take to power your mitochondria. 

In order to thrive, your mitochondria need phytonutrients, antioxidants, healthy fats and proteins.

Dr. Terry Wahls, MD, clinical professor of medicine at the University of Iowa, is a leading expert on the relationship between nutrition and mitochondrial health.

She was diagnosed with multiple sclerosis (MS) more than a decade ago but reversed the neurodegenerative brain disease by repairing her mitochondria with an intensive nutritional strategy. She outlines how she recovered her health in her book The Wahls Protocol

Research on her protocol shows that patients witness a “significant improvement in fatigue” (67). 

She recommends eating six to nine cups of vegetables and fruits every day, including green veggies (kale, spinach), brightly colored vegetables (beets, carrots, peppers), and sulfur-rich veggies (broccoli, cauliflower).

My Free Grocery Shopping Guide for Optimal Brain Health also contains a bunch of foods that you should be eating on a regular basis for optimal mitochondrial health. 

Dr. Wahls also has a fascinating TED talk that you can watch below if you're interested in learning more. 

Avoid Certain Foods and Ingredients

Eating poor-quality foods can also wear down your mitochondria. 

how-to-support-your-mitochondria-for-better-brain-health-mental-boost-increase-optimize-restore-repair-function-depression-fatigue-energy-foods-supplements-naturally-biogenesis-processed-foods

Genetically, your mitochondria were not designed to deal with our current food environment and lifestyle habits. 

On top of this, your mitochondria are expected to perform proficiently for much longer, as our ancestors rarely lived to the age of 80.

That’s why you should avoid refined sugars, processed flours, industrial oils and trans fats. They can damage your mitochondria and prevent them from properly producing energy.

Dr. Wahls also recommends you avoid all gluten, dairy and soy products for optimal mitochondrial health. I feel much better avoiding them completely. 

Eat More Essential Fats

Healthy fats, including omega-3 fatty acids, help build and strengthen the membranes of your mitochondria. They’ve also been shown to improve mitochondrial functioning in brain (5-7). 

That’s why Dr. Wahls recommends eating organic grass-fed beef or wild-caught fish, such as salmon, every day. Avocados, nuts, seeds, coconut and olive oil are also rich in healthy fats. 

Supplementing with krill oil is another option. I’ve discussed the overwhelming benefits of krill oil before here

Exercise

Not surprisingly, exercise strengthens your mitochondria by increasing oxygen and blood flow and activating biochemical pathways that produce new mitochondria (8). 

Runners have more high-functioning mitochondria than non-runners, and strength training and high-intensity interval training also increase the number of mitochondria and improve the efficiency of your existing mitochondria (9, 10).

Many experts recommend exercise for brain health, and as I’ve mentioned before, it can also increase brain-derived neurotrophic factor (BDNF), your brain’s growth hormone

Click here to subscribe

Low-Level Laser Therapy (LLLT)

Low-level laser therapy (LLLT) is a treatment that uses low-level (low-power) lasers or light-emitting diodes (LEDs) to stimulate brain cells, helping them heal and function better. 

There is strong evidence to suggest that LLLT supports the mitochondria. 

Research shows that it reduces oxidative stress and increases the production of ATP energy in mitochondria (39, 40). 

These mitochondrial benefits have also been seen directly within the brain. Studies show that LLLT increases mitochondrial activity within brain cells, and this leads to beneficial effects in behaviour (41). 

On top of all this, LLLT treatment has been shown to increase the number of mitochondria and mitochondrial oxygen usage within the brain (42, 43).

Frankly, it’s ridiculous that this therapy is not more well-known and promoted by doctors.

But if you’ve read my blog for a while now, I’m sure you understand why.

You don’t have to wait for conventional medicine to catch up, and you can experiment with it yourself since it’s known to be very safe (44).

I use these two devices on my own head:

  • Light Relief – I use this all over my head and over my thyroid. I place it on one area for 30-60 seconds, then move onto the next spot.

  • VieLight 810 – This is an intranasal device with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. You can get it through Amazon or the developer’s website. If you get it through the developer’s website, you can use the coupon code JORDANFALLIS for a 10% discount.

You can learn more about LLLT in this post

Infrared saunas are another excellent way to expose yourself to infrared light. Check out my post about the benefits here

And you should also limit your exposure to artificial blue light, as it can also wear down your mitochondria. You can learn more about the risks of too much blue light in this post

Resveratrol

Resveratrol is a beneficial antioxidant compound found in grapes and red wine. 

Not only does it increase BDNF levels, but it also activates the SIRT1 gene. This gene triggers a number of positive biochemical reactions that protect and improve the functioning of your mitochondria. Caloric restriction and intermittent fasting also trigger the SIRT1 gene (11, 12, 13).

In 2006, Harvard researchers found that resveratrol may increase lifespan by protecting the mitochondria (14).

That’s why I take this resveratrol on a regular basis and will continue to do so for the rest of my life.

Caloric Restriction and Intermittent Fasting

Restricting your calories is one the best actions you can take to improve mitochondrial function.

how-to-support-your-mitochondria-for-better-brain-health-mental-boost-increase-optimize-restore-repair-function-depression-fatigue-energy-foods-supplements-naturally-biogenesis-intermittent-fasting

Studies show that eating less food reduces the demand and damage on your mitochondria. 

But reducing calories is tough to do and absolutely no fun. 

That’s why I intermittent fast instead. 

Fasting activates your mitochondria and triggers autophagy, which is an intracellular process that essentially allows the mitochondria to clean themselves by removing unwanted and damaged debris, proteins and reactive oxygen species (1, 2, 4).

This process has been shown to reduce the risk of cancer, Parkinson’s disease and Alzheimer’s disease (3). 

Nicotinamide Adenine Dinucleotide (NADH)

NADH is a naturally-occurring compound found in the cells of all living organisms.

It plays a key role in the production of energy within the cell and is highly concentrated within your mitochondria (45). 

Depletion of NADH has been linked to a number of diseases, including depression, chronic fatigue syndrome, Alzheimer’s and Parkinson’s, and stabilized oral NADH has been shown to improve all of these conditions (46, 47, 48). 

Although I don’t take it anymore, I’ve witnessed a beneficial effect from supplementing with this NADH through Amazon

LLLT also increases NADH in your mitochondria. 

Click here to subscribe

Ketogenic Dieting

A ketogenic diet is a very low-carb diet. 

When you restrict carbohydrate-rich foods, your body enters ketosis, a metabolic state in which your body and brain run on fatty acids and “ketones” instead of glucose (36).

Ketones are an alternative source of energy for your brain cells and their mitochondria. 

When your mitochondria are dysfunctional, following a ketogenic diet can be an effective strategy to fuel the mitochondria. 

When mitochondria are fueled by ketones instead of glucose, their ability to produce ATP is enhanced and free-radical byproducts are reduced.
— Dr. Jong Rho, MD, Professor of Pediatrics and Clinical Neurology at the Alberta Children’s Hospital

Ketogenic diets may help treat many different brain and mental health diseases including Alzheimer’s, Parkinson’s, epilepsy and autism. 

Exogenous ketones can help you get into ketosis quickly.

I take Optimal Ketones, and it immediately increases my mental clarity (even when I'm eating carbohydrates). 

B Vitamins

All of the B vitamins play an essential role in maintaining mitochondrial function, and your mitochondria will be compromised if you have a deficiency of any B vitamin (37). 

Deficiency is more likely if you take certain medications

I take this B complex. It includes the bioactive forms of all of the B vitamins. 

Ribose

Ribose is a five carbon sugar created naturally by your body. Even though it’s a sugar, research suggests it does not raise blood sugar levels. Instead, your body stores it in the mitochondria (49, 50). 

Ribose is used by the mitochondria to produce ATP and if you don’t have enough, you’ll experience low energy (51). 

Chronic stress can deplete ribose, and certain conditions have been linked to chronic ribose deficiency, including depression and chronic fatigue syndrome. That’s why I recommend people supplement with ribose if they struggle with these disorders because it can help reduce mental and physical lethargy (52, 53).

I don’t take it every day, but I do cycle this ribose with other mitochondrial enhancers. 

Coenzyme Q10 (CoQ10)

Coenzyme Q10 (CoQ10) is an antioxidant molecule found in every cell of your body. It’s particularly concentrated in the mitochondria, playing a key role in the production of energy and protecting the mitochondria from oxidative damage. 

Without CoQ10, your body cannot synthesize ATP because CoQ10 is an essential component of the mitochondrial electron transport chain.

Many doctors are unaware that CoQ10 is an excellent treatment for many brain health issues, including depression, chronic fatigue, and Alzheimer’s disease. 

Low levels of CoQ10 can cause brain fog, mental fatigue, difficulty concentrating, memory lapses, depression and irritability (68-70). 

Researchers have found that CoQ10 levels are significantly lower in the depressed patients (71). 

Unfortunately, chronic oxidative stress and medications can further deplete CoQ10

But supplementing with CoQ10 can increase your mitochondrial energy production and reduce symptoms of depression and chronic fatigue (71). 

I took this CoQ10 supplement after coming off psychiatric medication

Ubiquinol is a lipid-soluble form of CoQ10. I haven’t taken it but it is the most active form of CoQ10. 

If you decide to supplement with CoQ10, you should take it with a healthy fat source such as coconut oil to increase absorption because it is fat soluble. 

Food sources with high natural concentrations of CoQ10 include organic red palm oil and grass-fed beef heart (72, 73). 

Pyrroloquinoline quinone (PQQ)

Pyrroloquinoline quinone (PQQ) is a vitamin-like enzyme and potent antioxidant found in plant foods with a wide range of brain health and mitochondrial benefits.

It’s been shown to preserve and enhance memory, attention, and cognition by protecting the mitochondria from oxidative damage and promoting the growth of new mitochondria in the brain (56-59). 

Since it helps grow new mitochondria, it may help you if you suffer from depression, since fewer mitochondria have been found in people with depression (63). 

Reactive nitrogen species (RNS) and reactive oxygen species (ROS) cause severe stress on brain cells and mitochondria, and PQQ has also been shown to suppress RNS and ROS (60-62). 

Researchers have found that supplemental PQQ can be neuroprotective by increasing mitochondrial activity levels (64-66). 

I recommend taking 10-20 mg each day along with CoQ10, as they are synergistic. Taking them together leads to further improvements in cognitive function (57).

You can get it here

It's also included in this supplement

Check out the “Neuroprotective” section of the PQQ Wikipedia page for more information on the brain health benefits of this compound. 

Magnesium

Magnesium is a vital mineral within your body, and the mitochondria are considered magnesium “storage units” because they hold onto a lot of your body’s magnesium. 

Magnesium protects the mitochondria and plays a role in the production and transfer of ATP within the mitochondria. And research shows that if you have a deficiency in magnesium, your brain cells will have fewer mitochondria, and they will be less healthy (54, 55). 

This is just another reason to supplement with at least 200 mg of magnesium every day. It’s one of the most important nutrients for optimal brain health. I take this one through Amazon

Click here to subscribe

Acetyl-Carnitine (ALCAR) and Alpha Lipoic Acid

Acetyl-Carnitine (ALCAR) is an acetylated form of the amino acid carnitine.

Carnitine is an amino acid that improves mitochondrial activity and plays an important role in energy production by transporting fatty acids directly into the mitochondria of your brain cells. It is required to produce ATP and deficiencies are associated with reduced mitochondrial function in the brain (74). 

Supplementing with ALCAR makes it easier for fatty acids to cross your blood-brain barrier and nourish the mitochondria within your brain. This can improve your mood, memory and energy levels.

Several studies show that ALCAR eases depressive symptoms and improve quality of life in patients with chronic depression (75-78). 

how-to-support-your-mitochondria-for-better-brain-health-mental-boost-increase-optimize-restore-repair-function-depression-fatigue-energy-foods-supplements-naturally-biogenesis-alcar-rla

And individuals with autism often have reduced levels of carnitine within their brain (79). 

ALCAR is included in the Optimal Brain supplement. You can get it here, and Amazon also now carries it.

ALCAR is also synergistic with Alpha Lipoic Acid (ALA), meaning that when you take them together, they are more effective at supporting the mitochondria in your brain.

ALA is a mitochondrial enzyme and antioxidant. It is fat soluble and can easily cross your blood-brain barrier.

It’s been shown to improve cognition by reducing oxidative stress, and protecting existing mitochondria and creating new mitochondria in the brain (80, 101).

Other helpful nutrients that support your mitochondria and provide raw materials for them to produce ATP:

Conclusion

how-to-support-your-mitochondria-for-better-brain-health-mental-boost-increase-optimize-restore-repair-function-depression-fatigue-energy-foods-supplements-naturally-biogenesis

Paying attention to your mitochondria is crucial for optimal brain and mental health, and luckily there are a number of dietary and lifestyle habits that can protect and support mitochondrial function.

The following steps will ensure your body and brain have healthier and more abundant mitochondria: 

Over time, if you follow these strategies, you can improve your mitochondrial health and naturally restore your mood and energy levels.

Please share this post with one of your friends or family members who you think might benefit from protecting and supporting their mitochondria, because it really is an underappreciated and unknown aspect of optimal brain and mental health. 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) http://nutritionandmetabolism.biomedcentral.com/articles/10.1186/1743-7075-10-63

(2) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630798/

(3) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630798/

(4) http://www.hindawi.com/journals/jar/2011/807108/

(5) http://www.ncbi.nlm.nih.gov/pubmed/24396061

(6) http://www.ncbi.nlm.nih.gov/pubmed/24972878

(7) https://lipidworld.biomedcentral.com/articles/10.1186/1476-511X-11-142

(8) http://www.nutritionandmetabolism.com/content/10/1/63

(9) https://www.masscfids.org/resource-library/13-basic-information/302-mitochondrial-dysfunction-post-exertional-malaise-and-cfsme

(10) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883043/

(11) http://www.ncbi.nlm.nih.gov/pubmed/15749705

(12) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2492662/

(13) http://www.ncbi.nlm.nih.gov/pubmed/24449278

(14) http://www.cell.com/cell/abstract/S0092-8674(06)01428-0?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867406014280%3Fshowall%3Dtrue

(15) http://www.nrjournal.com/article/S0271-5317(03)00234-3/abstract

(16) http://www.ncbi.nlm.nih.gov/pubmed/20840838

(17) http://www.nature.com/tp/journal/v5/n1/full/tp2014131a.html

(18) http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462011000400003

(19) http://www.ncbi.nlm.nih.gov/pubmed/22776356

(20) http://www.fasebj.org/content/19/12/1657.abstract

(21) http://www.ncbi.nlm.nih.gov/pubmed/6493495

(22) http://link.springer.com/article/10.1007/s13105-013-0242-y

(23) http://www.ncbi.nlm.nih.gov/pubmed/16102804

(24) http://www.healio.com/endocrinology/practice-management/news/online/%7B4b5c8b84-70c2-4928-a7b0-88f24f50d609%7D/vitamin-d-supplementation-enhanced-mitochondrial-function-lessened-fatigue

(25) http://www.ncbi.nlm.nih.gov/pubmed/12657421

(26) http://www.ncbi.nlm.nih.gov/pubmed/21423579

(27) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100547/

(28) http://www.ncbi.nlm.nih.gov/pubmed/15183071

(29) http://www.fasebj.org/content/20/2/269.abstract

(30) https://biolres.biomedcentral.com/articles/10.1186/0717-6287-47-74

(31) http://www.ncbi.nlm.nih.gov/pubmed/26278015

(32) http://www.ncbi.nlm.nih.gov/pubmed/19211721

(33) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670924/

(34) http://www.ncbi.nlm.nih.gov/pubmed/26365487

(35) http://www.ncbi.nlm.nih.gov/pubmed/21061051

(36) http://www.ncbi.nlm.nih.gov/pubmed/17332207

(37) http://www.ncbi.nlm.nih.gov/pubmed/16765926

(38) http://www.ncbi.nlm.nih.gov/pubmed/2476986/

(39) http://www.ncbi.nlm.nih.gov/pubmed/10365442/

(40) http://www.ncbi.nlm.nih.gov/pubmed/6479342/

(41) http://www.ncbi.nlm.nih.gov/pubmed/17693028/

(42) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945284/?report=classic

(43) http://www.ncbi.nlm.nih.gov/pubmed/22850314

(44) http://www.ncbi.nlm.nih.gov/pubmed/23675984

(45) http://www.nadhenergy.eu/what-does-nadh-do.html

(46) http://www.ncbi.nlm.nih.gov/pubmed/10071523

(47) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346380/

(48) http://www.ncbi.nlm.nih.gov/pubmed/15134388

(49) http://lifewave.com/pdf/ThetaNutrition/%283%29Enhancing-Mitochondrial-Function-With-D-Ribose.pdf

(50) http://thealbanyjournal.com/2012/01/energize-yourself-with-d-ribose/

(51) http://lifewave.com/pdf/ThetaNutrition/%283%29Enhancing-Mitochondrial-Function-With-D-Ribose.pdf

(52) http://lifewave.com/pdf/ThetaNutrition/%283%29Enhancing-Mitochondrial-Function-With-D-Ribose.pdf

(53) http://www.ncbi.nlm.nih.gov/pubmed/17109576

(54) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790427/

(55) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1172515/

(56) http://www.ncbi.nlm.nih.gov/pubmed/19861415

(57) http://www.humanclinicals.org/biopqq/

(58) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212345/

(59) http://www.ncbi.nlm.nih.gov/pubmed/18591768

(60) http://www.ncbi.nlm.nih.gov/pubmed/20178828

(61) http://www.ncbi.nlm.nih.gov/pubmed/12383230

(62) http://www.ncbi.nlm.nih.gov/pubmed/19026989

(63) http://www.ncbi.nlm.nih.gov/pubmed/21159390

(64) http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021779

(65) http://www.ncbi.nlm.nih.gov/pubmed/19699263

(66) http://www.ncbi.nlm.nih.gov/pubmed/16709402

(67) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4011484/

(68) http://www.ncbi.nlm.nih.gov/pubmed/23313551

(69) http://www.ncbi.nlm.nih.gov/pubmed/25386668

(70) http://www.ncbi.nlm.nih.gov/pubmed/21799249

(71) http://www.ncbi.nlm.nih.gov/pubmed/20010493

(72) http://coconutresearchcenter.org/hwnl_4-2.htm

(73) http://www.westonaprice.org/modern-diseases/coenzyme-q10-for-healthy-hearts/

(74) http://lpi.oregonstate.edu/mic/dietary-factors/L-carnitine

(75) http://www.ncbi.nlm.nih.gov/pubmed/12047496

(76) http://www.ncbi.nlm.nih.gov/pubmed/16316746

(77) http://www.ncbi.nlm.nih.gov/pubmed/21443422

(78) http://www.ncbi.nlm.nih.gov/pubmed/17543140

(79) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382850/

(80) http://www.lifeextension.com/magazine/2011/8/Lipoic-Acid-Reverses-Mitochondrial-Decay/Page-01

(81) http://www.nutritionandmetabolism.com/content/10/1/63

(82) http://www.ncbi.nlm.nih.gov/pubmed/16815381

(83) http://www.ncbi.nlm.nih.gov/pubmed/18979198

(84) http://www.ncbi.nlm.nih.gov/pubmed/19664343

(85) http://www.ncbi.nlm.nih.gov/pubmed/18428021

(86) http://www.ncbi.nlm.nih.gov/pubmed/11579422

(87) http://www.ncbi.nlm.nih.gov/pubmed/23650447

(88) http://www.ncbi.nlm.nih.gov/pubmed/16027739

(89) http://www.ncbi.nlm.nih.gov/pubmed/18177933

(90) http://www.ncbi.nlm.nih.gov/pubmed/18235426

(91) http://psych.lf1.cuni.cz/zf/publikace/b005.pdf

(92) http://www.ncbi.nlm.nih.gov/pubmed/21414088

(93)https://www.researchgate.net/publication/228683547_Common_aspects_of_neuroplasticity_mood_disorders_and_mitochondrial_functions

(94) http://www.pnas.org/content/112/50/15486.full.pdf

(95) http://www.nature.com/tp/journal/v4/n6/full/tp201444a.html

(96) http://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-015-0310-y

(97) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640606/

(98)https://www.researchgate.net/publication/221747050_Corticosterone_reduces_brain_mitochondrial_function_and_expression_of_mitofusin_BDNF_in_depression-like_rodents_regardless_of_exercise_preconditioning

(99)http://hypotyreos.info/attachments/079_Mitokondriell%20dysfunktion%20i%20depressiva%20sjukdomar.pdf

(100) http://www.ncbi.nlm.nih.go v/pmc/articles/PMC4382850/

(101) http://www.ncbi.nlm.nih.gov/pubmed/17605107

(102) http://www.ncbi.nlm.nih.gov/pubmed/24189435

(103) http://www.sciencedirect.com/science/article/pii/S0925443909002427

(104) http://www.ncbi.nlm.nih.gov/pubmed/20114042

(105) http://archpsyc.jamanetwork.com/article.aspx?articleid=210694

(106) https://www.masscfids.org/resource-library/13-basic-information/302-mitochondrial-dysfunction-post-exertional-malaise-and-cfsme

(107) http://www.umdf.org/site/c.8qKOJ0MvF7LUG/b.7934627/k.3711/What_is_Mitochondrial_Disease.htm

(108) http://www.ncbi.nlm.nih.gov/pubmed/17239370

(109) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566449/

(110) https://riordanclinic.org/wp-content/uploads/2015/01/mitochondria-and-cancer-1.pdf

Reviewed by Dr. Terry Wahls, MD