32 Proven Ways to Increase Nerve Growth Factor (NGF)

Nerve Growth Factor (NGF) plays a crucial role in keeping your mind sharp.

It’s a protein that supports the growth, survival, and maintenance of nerve cells. 

It's absolutely essential for optimal cognitive performance.

But with age, stress, and various lifestyle factors, NGF levels can decline over time. 

This can lead to reduced mental sharpness and an increased risk of neurodegenerative disorders

Fortunately, there are many science-backed ways to boost your NGF levels.

In this article, I'll delve into the fascinating world of NGF.

I’ll explore the importance of NGF for optimal brain function. 

And then I’ll provide some actionable strategies to enhance NGF production naturally.

Read on as I uncover the importance of NGF and share 32 proven methods to increase its production.

By implementing these strategies, you'll be well on your way to achieving optimal brain function and unlocking the full potential of your mind.

best-proven-ways-to-how-what-increase-stimulates-nerve-growth-factor-ngf-boost-levels-release-production-natural-supplements-benefits-improve-brain-health-neurogenesis-neuroplasticity-repair-cognitive-function-memory-enhancement-nerve-regeneration-fo

What Is Nerve Growth Factor (NGF)?

Nerve Growth Factor (NGF) is a protein that belongs to a family of molecules called neurotrophins.

Neurotrophins are essential for the development and maintenance of neurons. Neurons are the primary cells responsible for transmitting information within the nervous system.

NGF was the very first neurotrophin discovered by scientists. It was discovered in the 1950s by Rita Levi-Montalcini and Stanley Cohen. They later received the Nobel Prize for their work.

NGF has since been the subject of extensive research due to its crucial role in neuronal health.

NGF is primarily involved in the growth, survival, and maintenance of nerve cells, particularly those responsible for transmitting pain, temperature, and touch sensations. 

It promotes the survival of existing neurons, helps with the growth of new neurons (neurogenesis), and assists in repairing damaged nerve cells.

NGF also plays a significant role in the formation and preservation of synapses. Synapses are the junctions between neurons that enable communication within the brain. NGF’s impact on synapses makes it absolutely critical for learning, memory, and overall cognitive performance.

 

The Benefits of Increasing NGF Levels and How It Affects Your Brain

NGF has a positive impact on various aspects of brain health and cognitive function. 

Increasing your NGF levels can be the key to unlocking a healthier, more vibrant brain. 

Some of the key benefits of boosting NGF include:

Enhanced cognitive function: Higher NGF levels can support the growth and survival of neurons, leading to enhanced cognitive abilities, such as improved memory, learning, and problem-solving (1-3). 

Support for nerve regeneration: Increased NGF levels can support the regeneration of nerves, which can be particularly beneficial in cases of nerve injury or damage (4-5). 

Enhanced neuroplasticity: Higher NGF levels also contribute to improved synaptic plasticity, which is the brain's ability to adapt and reorganize its connections in response to new experiences and learning. Increasing NGF levels can promote more efficient neural connections and improve the brain's adaptability (6-7). 

Better mood and reduced anxiety: NGF has been found to play a role in mood regulation, particularly in the production and function of serotonin and other neurotransmitters. As a result, increasing NGF has been associated with improved mood, reduced anxiety and depression, and overall emotional well-being (8-10). 

Neuroprotection and protection against neurodegenerative diseases: Having adequate NGF levels can help protect neurons from damage. As a result, increasing NGF can reduce the risk of age-related cognitive decline and neurodegenerative disorders like Alzheimer's disease and Parkinson's disease (11-14). 

Support for brain injury recovery: NGF plays a role in nerve repair and regeneration, making it a potential therapeutic target for recovering from brain injuries and strokes (15-16).

Pain relief: NGF plays a role in pain perception and regulation. Increased NGF levels can help alleviate chronic pain in certain conditions, such as neuropathic pain (17-20). 

Improved stress resilience: Higher NGF levels may help the brain better cope with stress and recover from stress-related damage, leading to improved stress resilience and overall mental health (21-23). 

 

Conditions and Symptoms Associated with Low NGF Levels

Low levels of Nerve Growth Factor (NGF) have been linked to various health conditions, particularly those related to the nervous system and cognitive function. 

Some health conditions that have been linked to low NGF levels include:

Alzheimer's disease: Lower NGF levels have been observed in patients with Alzheimer's disease. Insufficient NGF can contribute to the degeneration of cholinergic neurons, which play a critical role in cognitive function (24-27). 

Parkinson's disease: Reduced NGF levels have also been reported in Parkinson's disease, a neurodegenerative disorder that affects movement and motor function (28-30). 

Depression and anxiety: Low NGF levels have been associated with mood disorders such as depression and anxiety. NGF is involved in the regulation of neurotransmitters like serotonin, which plays a role in mood regulation (31-32). 

Schizophrenia: Some studies have found lower NGF levels in individuals with schizophrenia, a complex mental disorder that affects thinking, perception, and behavior (33-34). 

Chronic pain: NGF is involved in pain perception and regulation, and low NGF levels may contribute to the development or maintenance of chronic pain conditions, such as neuropathic pain or fibromyalgia (35-38). 

Age-related cognitive decline: Reduced NGF levels may contribute to age-related cognitive decline and the development of age-related neurodegenerative disorders (39-40). 

Multiple sclerosis: Some studies suggest that low NGF levels may be associated with multiple sclerosis, an autoimmune disease that affects the central nervous system (41-43). 

Autism spectrum disorder: Some studies have suggested that low NGF levels may be associated with autism spectrum disorder (ASD), a developmental disorder that affects communication and behavior (44-46). 

Obsessive-compulsive disorder (OCD): Preliminary research has suggested a possible link between low NGF levels and OCD, a mental health disorder characterized by recurring, unwanted thoughts and compulsive behaviors (47). 

Traumatic brain injury (TBI): Reduced NGF levels have been observed in individuals who have experienced a TBI. Adequate NGF levels may play a role in neuronal repair and recovery following brain injury (48).

Now, let’s dive into how to increase your NGF levels.

 

The Best Lifestyle Habits, Therapies and Practices To Increase NGF

1. Exercise

Exercise not only helps improve cardiovascular health and general well-being.

It also has direct benefits on cognitive function and neuroplasticity.

Regular physical activity has been shown to have a significant impact on brain health, including increasing NGF levels. 

Studies have shown that regular aerobic exercise can enhance memory and learning by increasing NGF levels in the brain (83). 

Activities like running, swimming, cycling, or brisk walking increase heart rate and blood flow, promoting the release of various growth factors, including NGF (84). 

Strength training exercises, such as weightlifting or bodyweight exercises like push-ups and squats, have also been associated with increased NGF levels (85). 

By including a combination of aerobic exercise and resistance training in your routine, you can effectively increase NGF levels and promote better cognitive function, memory, and learning

Regular exercise also helps reduce stress and improve mood

Exercise is recommended by many experts and it’s often their number one piece of advice for optimal brain health. 

My usual advice is to find a sport or exercise routine that you enjoy, so that you’ll stick with it consistently.

 

2. Sleep

Sleep plays a vital role in maintaining brain health and function, including the regulation of NGF levels. 

During sleep, the brain undergoes essential processes such as memory consolidation, toxin clearance, and neural repair.

All of these processes are influenced by NGF.

Research has shown that NGF levels naturally fluctuate throughout the day, with higher levels occurring during nighttime sleep (87). 

This increase in NGF during sleep is believed to support the brain's restorative processes and facilitate memory consolidation.

Moreover, sleep deprivation has been shown to negatively impact NGF levels. This then leads to impaired cognitive function, reduced memory, and increased susceptibility to stress (86). 

This suggests that getting adequate sleep is crucial for maintaining optimal NGF levels and overall brain health.

I personally used to have very poor sleep and it was one of the main factors that contributed to my poor cognitive function. 

If you’re having trouble with sleep, try this sleep supplement. It contains magnesium and other natural compounds that I’ve used over the years to promote deeper and more restful sleep. 

I also work with my clients so that they can naturally produce more melatonin and maximize the quality of their sleep without so many supplements. We have a free online workshop that talks about how you can work with us. You can register for the workshop here.

 

3. Meditation

Meditation is a practice that involves focusing the mind, promoting relaxation, and developing a heightened state of awareness. 

Regular meditation has been shown to have numerous benefits for mental well-being.

The benefits include stress reduction, improved concentration, and increased self-awareness.

In addition to these benefits, meditation has also been found to positively influence NGF levels.

Research suggests that meditation can increase the production of NGF in the brain, particularly in areas related to learning, memory, and emotional regulation (88). 

This increase in NGF levels may be one of the mechanisms through which meditation supports cognitive function and overall brain health.

Studies have also shown that meditation can help reduce stress and inflammation, both of which can negatively impact NGF levels (89-91). 

To experience the benefits of meditation on NGF levels and brain health, it's essential to practice regularly. 

You should aim for at least 10-20 minutes of meditation per day, gradually increasing the duration as you become more comfortable with the practice. 

By incorporating meditation into your daily routine, you can effectively support NGF production, improve cognitive function, and promote overall mental well-being.

Meditation is one of my favorite daily activities and treatments to maintain optimal brain function and mental health. 

I recommend the Muse headband to meditate. It gives you real-time feedback while you meditate. It makes meditation a lot more fun and tolerable. 

I previously wrote about it here, and you can get it through the Muse website.

 

4. Sunlight (Vitamin D)

Exposure to natural sunlight is crucial for the production of vitamin D in the skin. 

Vitamin D is involved in various neurophysiological processes, including neuroprotection, neuroplasticity, and neurotransmitter synthesis. 

It also plays a role in the regulation of nerve growth factor (NGF).

Low levels of vitamin D have been associated with an increased risk of developing neurological and psychiatric disorders.

But studies show that higher levels of vitamin D can support NGF production and increase NGF levels in the brain. 

In a review article, researchers highlight the role of vitamin D in the nervous system, including its impact on neurotrophic factors such as NGF. 

The authors discuss how vitamin D has been shown to promote the synthesis of NGF (92). 

Another review article discusses the potential role of vitamin D in various neurological diseases

The authors mention that vitamin D deficiency has been associated with decreased NGF production (93). 

Besides sunlight exposure, fatty fish and dairy products are some food sources of vitamin D.

But vitamin D supplementation is often necessary for those with limited sun exposure or dietary restrictions.

If you have limited sun exposure or dietary sources, you should consider taking a vitamin D supplement to boost your NGF levels and support your brain health.

Sunlight exposure is definitely better than supplements, though.

I personally get sunlight every single day during the spring and summer months. 

It’s important to get the sunlight in your eyes to trigger the release of neurotransmitters. So make sure you don’t wear contacts, glasses or sunglasses when you go outside. It’s especially important to do this in the morning because it sets your circadian rhythm. 

At the very least, you should take a Vitamin D supplement if you’re deficient. I take some Vitamin D3 in supplement form, depending on my levels. 

But it's important to test and monitor your Vitamin D levels before and after supplementing with it.

 

5. Low-Level Laser/Light Therapy (LLLT)

Low-level laser/light therapy (LLLT), also known as photobiomodulation, uses light at specific wavelengths to modulate cellular activity.

It has been shown to have various therapeutic effects on the nervous system. 

There is a narrative review that summarizes the current knowledge on the therapeutic effects of LLLT in various neurological conditions

In the review, the authors discuss the potential mechanisms of action of LLLT

They talk about how it can upregulate neurotrophic factors such as NGF, and this then contributes to the overall benefits observed in nervous system disorders (96). 

Some studies have looked at the direct impact of LLLT on NGF levels.

In one study, researchers investigated the effects of LLLT on spinal cord injury. 

The researchers found that LLLT significantly increased levels of NGF.

They concluded that LLLT can promote nerve regeneration and functional recovery by increasing NGF (94). 

Another study looked at the efficacy of LLLT on peripheral nerve regeneration following nerve injury. 

The authors again found that LLLT significantly increased NGF levels, and it contributed to improved nerve regeneration and functional recovery (95). 

I previously wrote about my experience with LLLT here

I use this device and shine the red and infrared light on my forehead for 5 minutes every day. I also shine it on other parts of my head and on my entire body, including on my thyroid, thymus gland and gut. I experience incredible benefits from doing this. 

When I’m traveling, I take this smaller and more convenient device with me and shine it on my forehead. 

I’ve also been using the Vielight Neuro Duo, which is a transcranial-intranasal headset with 810 nm of near infrared light. It penetrates deeper into brain tissue and is absorbed better by the central nervous system. If you decide to try a Vielight device, you can use the coupon code JORDANFALLIS for a 10% discount. 

Before trying LLLT, I highly recommend reading my full article about it first.

Click here to subscribe

6. Cognitive Stimulation

Cognitive stimulation involves engaging in various mental exercises and activities to enhance cognitive function.

Mentally stimulating activities include puzzles, reading, learning a new language, or playing a musical instrument.

Research suggests that cognitive stimulation can boost NGF levels. 

In a review article, researchers discuss the effects of environmental enrichment and cognitive stimulation on brain function and plasticity. 

The authors highlight that these interventions can lead to the upregulation of neurotrophic factors such as NGF (99). 

In another review article, researchers discuss the benefits of cognitive stimulation on brain health and plasticity. 

The authors propose that one potential mechanism by which cognitive stimulation exerts its effects is through the upregulation of neurotrophic factors such as NGF (97). 

In one study, the researchers found that cognitive stimulation through environmental enrichment increased the production of NGF in the brain. 

This increase in NGF levels was associated with enhanced learning and memory performance (98). 

 

7. Social Interaction

Positive social connections and experiences can also promote the release of NGF.

In one study, researchers found that mice raised in a socially enriched environment had higher NGF levels in specific brain regions and exhibited improved social behaviors (100). 

Follow-up studies also showed that environmental enrichment, including social interaction, increased NGF levels in certain brain regions and improved behavioral outcomes (101-102). 

This is just one reason why it's essential to maintain a healthy social life.

So if you want to produce more NGF, my advice is to talk to people whenever you get the chance, and hang out with your friends and family as much as possible. I should probably be taking my own advice here because I’m an introvert and don’t socialize too much. 

But even just connecting through social media can help. It doesn’t necessarily need to be in person, although that’s definitely better.

8. Acupuncture 

Acupuncture, a traditional Chinese medicine practice, has also been shown to increase NGF levels.

In one study, researchers found that electroacupuncture increased NGF levels, which could be associated with reduced brain injury and improved functional recovery (103). 

In another study, researchers found that acupuncture increased NGF levels in the brain, which was associated with improved cognitive function (105). 

And then other research has shown that electroacupuncture increases the expression of NGF and other neurotrophic factors, which can then protect the brain from injuryy (104). 

I’m personally a really big fan of auricular acupuncture. 

Auricular acupuncture is when needles are inserted into the ear. I’d recommend trying to find a health practitioner in your area who provides it, especially if you’re weaning off psychiatric medication

It really helped me the first time I came off antidepressants. I was surprised. At the end of each appointment, my practitioner would secure small black seeds on my ear. 

In my experience, ear acupuncture is more effective than regular acupuncture. 

I also lie on an acupuncture mat at home to relax before bed.

 

9. Massage

Regular massages can help increase NGF levels by promoting relaxation and reducing stress.

In one study, researchers found that massage therapy enhances NGF concentrations (106). 

In an animal study, researchers examined the effects of massage on nerve regeneration and functional recovery in rats with sciatic nerve injury. 

They found that massage therapy increased NGF levels in the sciatic nerve, which was associated with improved nerve regeneration and functional recovery (107). 

This is one reason why I regularly get a massage from a registered massage therapist. 

Massage also reduces cortisol, increases GDNF, and stimulates the vagus nerve.

 

10. Yogic Breathing

Yogic breathing techniques help to calm the mind, reduce stress, increase focus, and promote relaxation.

They also appear to increase NGF levels. 

In one study, researchers found that yogic breathing stimulates the expression of NGF in cognitively normal healthy volunteers (108).

Click here to subscribe

11. Intermittent Fasting

Intermittent fasting is an eating pattern where individuals cycle between periods of fasting and eating. 

It has been found to positively impact various aspects of health, including brain health.

Research suggests that intermittent fasting can stimulate the production of neurotrophic factors, such as NGF. 

This can then result in improved cognitive function, increased neurogenesis, and enhanced neuronal plasticity.

In one study, researchers found that intermittent fasting increased the expression of NGF. 

The increase in NGF was associated with improved cognitive function and reduced brain damage (109). 

In another study, rats underwent intermittent fasting, and they exhibited increased NGF levels.

This resulted in enhanced neuronal survival and reduced brain degeneration (110). 

I often eat all my food for the day within an 8-hour window, and then fast for the rest of the day. 

The best way to start fasting is by eating dinner around 6, not eating anything after that before bed, and then eating a regular breakfast the next day. That should give you about 12-14 hours of fasting time.

 

12. Cold Exposure

Short-term exposure to cold temperatures, such as cold showers or ice baths, can also help increase NGF levels.

It does this by triggering the release of norepinephrine, a neurotransmitter known to stimulate NGF production.

In one study, researchers found that cold exposure increased the expression of NGF and other neurotrophic factors (111). 

In a review article, researchers discussed the potential of cold exposure to stimulate neurogenesis (the growth and development of new neurons) in the adult brain. 

The authors suggest that cold exposure can increase the production of neurotrophic factors, such as NGF. This then promotes neurogenesis and improves cognitive function (112).

To practice cold exposure, you can try taking cold showers or spending time in a cool environment. 

But make sure you do so safely and within your comfort limits.

I personally take a cold shower every day.

During the winter, I’ll also go outside for short periods of time with hardly any clothes. It boosts my dopamine and increases my motivation.

You don’t have to be that extreme though.

You can start by finishing your next shower with one minute of cold water.

See how it feels, and then over time, increase the amount of time you turn off the hot. 

It can be a bit painful.

But the beneficial effects end up being worth it. 

Another way is to stick your face, hand or foot in ice cold water.

Or you can try cold plunges, cold baths and even cryotherapy if you want.

Find what works best for you and do it regularly.

 

13. Reduce Inflammation

Chronic inflammation can negatively impact NGF levels. 

Researchers have found that interleukin-1β (IL-1β), a pro-inflammatory cytokine, decreases the production of NGF and other neurotrophic factors (113). 

Interleukin-6 (IL-6) has also been shown to regulate the production of neurotrophic factors, such as NGF (114). 

There are many causes of chronic inflammation, including infections, toxic mold, brain injuries, and leaky brain.

But one of the most common causes – and the one you have the most control over – is your diet.  

That’s why I recommend following an anti-inflammatory diet and limiting foods that can trigger inflammation in the gut and brain.

You should also remove processed food from your diet, and increase your intake of vegetables, fruits, wild fish, grass-fed beef and organic chicken.

Check out my Free Grocery Shopping Guide for Optimal Brain Health for a full list of anti-inflammatory foods. 

Other steps you can take to reduce inflammation include reducing stress, exercising regularly, improving gut health, treating infections and getting enough sleep.

Make sure you also check out this article for 23 effective ways to reduce inflammation in the brain

 

14. Increase BDNF

BDNF (brain-derived neurotrophic factor) is another growth factor that plays a crucial role in the growth and maintenance of neurons. 

Activities and interventions that increase BDNF, such as exercise, may also help increase NGF levels.

Researchers often find that interventions that improve BDNF levels also have a positive impact on NGF levels.

For example, researchers have investigated the effects of exercise on the expression of BDNF and NGF in the brain. 

Their results often show that exercise increases both BDNF and NGF levels (115). 

Researchers have also found that cinnamon increases both BDNF and NGF levels in the brain (116). 

This suggests a potential link between interventions that increase BDNF and those that also increase NGF levels. 

I previously provided 31 ways to boost BDNF in this article

 

15. Transcranial Magnetic Stimulation (TMS)

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique.

It uses magnetic fields to stimulate specific areas of the brain. 

By stimulating specific areas of the brain, TMS has effects on NGF levels. 

Emerging research and studies have shown that TMS can modulate and increase the production and release of various neurotrophic factors, including NGF. 

This then supports neuronal growth, synaptic plasticity, and overall brain function.

As a result, TMS has been approved for the treatment of various neurological and psychiatric conditions, such as major depressive disorder, obsessive-compulsive disorder, and migraine. 

In one study, researchers investigated the effect of repetitive TMS (rTMS) on serum levels of neurotrophic factors, including NGF, in drug-resistant depressed patients

The results showed a significant increase in serum NGF levels following rTMS treatment (117). 

In another study, researchers explored the effects of rTMS on plasma levels of NGF and other neurotrophic factors in patients with amyotrophic lateral sclerosis (ALS). 

The researchers found that rTMS led to increased NGF levels in these patients (118). 

This increase in NGF may contribute to the therapeutic effects of TMS, such as improved mood and cognitive function in individuals with depression.

I don’t have any personal experience with TMS. I investigated it but never ended up doing it myself and never ended up needing it. It can sometimes help people who have treatment resistant depression. But I think it should be a last resort and other alternatives should be explored first.

 

The Best Foods and Nutrients To Increase NGF

16. Omega-3 Fatty Acids

Omega-3 fatty acids, particularly EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), are vital for brain health. 

They are considered “essential fatty acids”, meaning your body cannot create them and you have to get them from food or supplements.

They’re found in fish oil, and making sure you get more of them is one of the most important actions you can take to support your brain and nervous system. 

Many studies show that they significantly reduce brain inflammation; improve memory, mood and cognition; and protect against mild cognitive impairment, dementia and Alzheimer's disease.

They have also been linked to increased NGF levels.

In one study, researchers demonstrated that DHA promoted neurite growth in hippocampal neurons. 

They found that DHA treatment increased NGF secretion in the neurons, suggesting that the observed neurite growth might be mediated by NGF (50). 

In another study, researchers found that DHA promoted the development of hippocampal neurons and enhanced synaptic function

The authors suggested that the effect of DHA on neuronal development is likely mediated, in part, by its activation of the NGF receptor and downstream signaling pathways (49). 

Omega-3 fatty acids can be found in fatty fish, walnuts, flaxseeds, and chia seeds.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

 

17. Turmeric (Curcumin)

Curcumin, the active compound in turmeric, is one of my favorite natural compounds for the brain.

It has been found to improve memory and protect against neurodegenerative diseases.

One way it does this is by boosting NGF production.

Studies have shown that curcumin can increase the expression of NGF and its receptor (51).

In one study, researchers found that curcumin increased the expression of NGF in brain cells and increased the number of synapses formed between neurons (52). 

Other studies have also shown that curcumin increases the expression of NGF in a dose-dependent manner (53-54). 

Turmeric and curcumin are included in the Optimal Antiox supplement

Since turmeric and curcumin are fat soluble, they are best absorbed when combined with a fatty meal or taken with fats like coconut oil or olive oil.

 

18. Green Tea (EGCG, Theanine)

Several studies have investigated the potential effects of green tea and its polyphenols on nerve growth and function, including their effects on NGF expression and activity.

Researchers have found that the polyphenols in green tea, particularly epigallocatechin gallate (EGCG), can help increase NGF production.

In one study, researchers found that daily consumption of green tea for 12 weeks improved cognitive function and increased NGF levels in older adults with mild cognitive impairment (57). 

In another study, researchers found that EGCG increased NGF expression in a dose-dependent manner (56). 

If you're not a fan of drinking green tea, you can opt for a green tea extract supplement containing EGCG to increase NGF production instead.

In fact, most studies use either green tea extract or EGCG rather than regular green tea.

It’s also important to keep in mind that the body isn't very good at absorbing EGCG from green tea and distributing it to the brain and other tissues.  

That's why researchers often use large dosages of concentrated EGCG in their studies instead of green tea.  

But unfortunately, large doses of concentrated EGCG have been shown to cause liver toxicity.  

So you could supplement with large dosages of concentrated EGCG and see some benefits.  

But you'd be damaging your liver at the same time.  

Not good.  

So what should you do? How do you absorb EGCG and get the amazing benefits of it without damaging your liver?  

You take it with Vitamin C.  

Research shows that you can enhance the absorption and availability of EGCG by taking it with Vitamin C

That's why the Optimal Antiox supplement includes a small and safe amount of EGCG, plus 500 mg of Vitamin C.  

This significantly enhances the absorption of EGCG, and ensures you get all the brain and mental health benefits of EGCG (without the harm). 

Theanine, which is an amino acid found in green tea, has also been shown to increase NGF (55). 

Theanine is included in this supplement.

 

19. Magnesium

Magnesium is an essential mineral that plays a key role in nerve function.

It also plays a critical role in regulating the activity of ion channels in nerve cells, which are important for transmitting signals between nerve cells.

Research shows that magnesium supports NGF secretion and promotes the regeneration of nerve axons after central nervous system injury (58-60). 

There are a number of things you can do to make sure you’re getting enough magnesium.

First, make sure you’re eating magnesium-rich foods on a regular basis, including:

  • Spinach

  • Chard

  • Pumpkin seeds

  • Almonds

  • Avocado

  • Dark chocolate

  • Bananas

These foods are included in my Free Grocery Shopping Guide for Optimal Mental Health.

You can also increase your body’s intake of magnesium by taking Epsom salt baths.

Supplementation is often a good idea for most people.

You can find magnesium in the Optimal Energy supplement.

Click here to subscribe

20. Zinc

Zinc is an essential trace element that plays a crucial role in overall brain health and function. 

It is involved in numerous cellular processes, such as enzymatic reactions, gene expression, and protein synthesis. 

Zinc is also necessary for the proper functioning of the nervous system and has been shown to influence synaptic plasticity, learning, and memory.

Zinc has been linked to increased NGF levels. 

In one study, researchers found that zinc supplementation had a positive effect on NGF expression in the brain (61). 

Another study also found that zinc supplementation Increases NGF (62). 

I created and take the Optimal Zinc supplement to make sure my zinc levels are optimal. I created it because I want to give my readers the very best zinc supplement so that they can experience superior results. I have found that many zinc supplements on the market fall short. Optimal Zinc includes several other nutrients and co-factors that increase the absorption of zinc.  

Besides supplementing with zinc, you should also eat plenty of healthy, whole foods that contain zinc.

Some of the best foods to optimize your zinc levels include:

  • Oysters

  • Grass-fed beef

  • Pumpkin seeds

  • Cashews

  • Mushrooms

  • Spinach

These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

 

21. Lion's Mane Mushroom

Lion's mane mushroom (Hericium erinaceus) is a fungus that has been traditionally used in Chinese and Japanese medicine for cognitive enhancement and nerve health.

This edible mushroom has been shown to support overall brain health by promoting neurogenesis and stimulating NGF production.

Several studies have explored the effects of lion's mane mushroom on NGF.

In one study, researchers found that lion's mane mushroom had neurotrophic effects and was able to stimulate the production of NGF (63). 

Another study showed that compounds called hericenones, isolated from the lion's mane mushroom, were able to increase NGF synthesis (64). 

Researchers have identified two active compounds, erinacines A and C, which contribute to the mushroom’s NGF-inducing activity (65). 

Other research has shown that lion's mane mushroom mycelia extracts, which are rich in erinacines, promoted NGF synthesis and protected against neuronal damage (66). 

Lion’s mane mushroom extract is also available as a supplement in capsule or powder form.

 

22. Resveratrol

Resveratrol is a natural compound found in red wine, grapes, and berries that has antioxidant, anti-inflammatory and neuroprotective properties. 

It has been shown to increase GDNF, help restore the integrity of the blood-brain barrier, and support your mitochondria.

It can also help support NGF production.

In one study, researchers found that resveratrol increased the expression of NGF in the brain (67). 

Researchers have also investigated the effects of resveratrol on NGF and its receptor, TrkA. 

They have found resveratrol increased the levels of NGF and TrkA in the brain (68). 

To consume enough resveratrol to increase NGF, you’ll need to supplement with it.

Resveratrol can be found in this supplement.

 

23. Cinnamon

Cinnamon is a tasty spice that has a number of health benefits.  

It has been found to have positive effects on NGF levels in the brain.

In one study, researchers investigated the effects of cinnamon on the levels of neurotrophic factors, including NGF. 

They found that cinnamon led to an increase in NGF levels in the brain (116).

Not all cinnamon is created equal though.

You’ll have to find and consume Ceylon, which is considered “true cinnamon”. It has the most health benefits.

Most cinnamon in grocery stores is cheap and not actually Ceylon.

You can usually find Ceylon in health food stores.

 

The Best Natural Supplements and Herbs To Increase NGF

24. Alpha Lipoic Acid

Alpha lipoic acid (ALA) is a naturally occurring antioxidant found in certain foods. 

It is also produced by the body, playing a role in mitochondrial energy metabolism

It has been studied for its health benefits, including its neuroprotective effects.

In supplement form, it is a potent antioxidant compound that has been shown to improve cognition. 

It reduces oxidative stress and inflammation in the brain, which can contribute to neurological decline

It also helps regulate blood sugar levels, which is crucial for healthy brain function

Researchers have found that ALA increases NGF production as well.

In a review article, researchers mention that ALA has been shown to increase the expression of NGF in the brain (69). 

In one study, diabetic rats treated with ALA showed increased NGF levels in their sciatic nerves.

The researchers concluded that ALA could have a positive effect on neuronal health and function (70). 

Another study showed that ALA protected dopaminergic neurons against apoptosis. 

ALA's protective effect was associated with increased expression of NGF and other neurotrophic factors (71). 

Alpha Lipoic Acid can be found in spinach, broccoli, and organ meats like liver and kidney.

These foods are included in my Free Grocery Shopping Guide for Optimal Brain Health.

But ALA is more commonly taken as a supplement.

ALA supplements are fat soluble and can easily cross your blood-brain barrier

ALA can be found in the Optimal Antiox supplement

 

25. Acetyl-L-Carnitine

Acetyl-L-carnitine (ALCAR) is a naturally occurring compound derived from L-carnitine.

It’s involved in energy metabolism and the transport of fatty acids into the mitochondria

ALCAR has been studied for its neuroprotective effects and ability to enhance cognitive function.

It’s often used as a natural brain booster by people of all ages because it supports brain cells and increases alertness.

It’s also been associated with increased NGF levels. 

In one study, researchers found that ALCAR resulted in increased NGF levels in the brain.

It also increased the activity of choline acetyltransferase, which is an enzyme involved in the synthesis of the neurotransmitter acetylcholine (72). 

In another study, rats were treated with ALCAR

The treatment resulted in increased NGF levels and choline acetyltransferase activity in the brain (73). 

Regular carnitine is found in red meat, dairy products, and avocados.

But for best cognitive-enhancing results, ALCAR needs to be taken as a supplement.

I find that ALCAR personally gives me a big boost in cognitive energy and resilience. It keeps me motivated to do complex tasks that require optimal brain function.

That’s why it’s included in the Optimal Brain supplement.

Make sure you read this article to learn more about the remarkable benefits of ALCAR.

 

26. Ginkgo Biloba

Ginkgo biloba, an ancient tree species, has long been used in traditional medicine for its health benefits. 

Ginkgo biloba extracts have been studied for their antioxidant, anti-inflammatory, and neuroprotective properties.

It’s also been shown to improve memory and enhance cognitive function.

One way it does this is by increasing NGF levels. 

In one study, researchers found that Ginkgo biloba increased the expression of NGF in the brain

The increase in NGF levels was associated with enhanced neurogenesis and improved cognitive function (74). 

Another study demonstrated that Ginkgo biloba protected human neuroblastoma cells from cell death. 

The protective effect was associated with the upregulation of NGF expression (75). 

My Optimal Brain supplement contains Ginkgo Biloba, along with other premium ingredients that protect the brain and enhance cognition.

 

27. Phosphatidylserine

Phosphatidylserine is a naturally occurring phospholipid found in the cell membranes of neurons and other cells. 

It plays a critical role in maintaining membrane fluidity, regulating cell signaling, and supporting neurotransmission.

High amounts of phosphatidylserine are found in the brain, and supplementation has been shown to improve attention, learning and memory.

Studies have shown that phosphatidylserine can also enhance the production of NGF and other neurotrophic factors.

In one study, researchers found that phosphatidylserine increased the release of NGF (127). 

Another study showed that phosphatidylserine supplementation led to enhanced NGF receptor expression and improved cognitive function (128).

Phostadidylserine is included in the Optimal Brain supplement.

Make sure you read this article to learn more about the remarkable benefits of Phosphatidylserine.

 

28. Gotu Kola

Gotu kola (Centella asiatica) is an herb that has been used in traditional medicine systems for its cognitive-enhancing and neuroprotective properties. 

Some research suggests that Gotu kola has a positive effect on NGF levels.

In one study, researchers found that oral administration of Gotu kola significantly increased NGF levels in the brain.

The researchers suggested that the increased NGF levels might contribute to the memory-enhancing effects of Gotu kola (129). 

Another study demonstrated that Gotu kola promoted neurite outgrowth. This effect was partly mediated through the activation of the TrkA receptor, which is the primary receptor for NGF (130). 

It's important to point out that the Gotu Kola plant soaks up heavy metals from the soil. So you need to find a high-quality, organic source that doesn’t contain heavy metals.

Click here to subscribe

29. Bacopa Monnieri

Bacopa monnieri, also known as Brahmi, is a traditional Ayurvedic herb known for its cognitive-enhancing and neuroprotective properties.

It has been found to support memory and overall brain function. .

It’s also been shown to promote NGF production. 

In one study, researchers found that Bacopa monnieri increased the expression of NGF in the brain. 

The increase in NGF levels was associated with improved cognitive function and memory consolidation (76). 

In another study, treatment with Bacopa monnieri protected against oxidative stress and neurotoxicity. 

The neuroprotective effect was associated with an increase in NGF expression (77). 

Besides improving memory and cognition, I have found that bacopa is very relaxing and good at reducing anxiety and stress

So it’s a good option if you’re looking for something to increase NGF and relieve anxiety at the same time. 

 

30. Ashwagandha

Ashwagandha (Withania somnifera) is another adaptogenic herb commonly used in Ayurvedic medicine.

Its health benefits include stress reduction, cognitive enhancement, and neuroprotection.

Ashwagandha has also been shown to increase NGF levels.

One study demonstrated that withanolide A, a bioactive compound found in ashwagandha, promoted neurite outgrowth in neurons. 

The neurite outgrowth was accompanied by an increase in NGF expression.

The researchers concluded that ashwagandha can support neuronal regeneration by modulating NGF levels (78).

In another study, ashwagandha supplementation resulted in a significant increase in NGF levels in the brain. 

It also increased antioxidant enzymes in the brain.

This study suggests that ashwagandha has neuroprotective effects by modulating NGF expression and reducing oxidative stress (79). 

Ashwagandha is one of the main herbs I took to reduce stress and anxiety, and restore balance to my brain and body, after I came off psychiatric medications.

 

31. Rhodiola Rosea

Rhodiola Rosea is an adaptogenic herb that has been used for centuries. 

It’s one of the most popular adaptogens used to increase physical and mental stamina.

It helps the body adapt to stress, reduces fatigue, and enhances cognition. 

It also has a positive impact on NGF levels.

Salidroside is one of the primary active constituents of Rhodiola rosea.

In one study, salidroside had neuroprotective effects by upregulating the expression of NGF (80). 

I take rhodiola when I need an extra boost in brain function and cognitive energy. It’s especially useful after stressful periods of pushing myself too hard. It helps me recover faster.

Rhodiola also boosts acetylcholine and dopamine levels, and induces autophagy in the brain.  

Be sure to check out this article to learn more about the benefits of rhodiola.

 

32. Probiotics

Gut health is closely connected to brain health, and there is growing evidence that probiotics can influence brain function and neurochemistry.

Some studies suggest that probiotics can support NGF production. 

In one study, researchers investigated the effects of chronic administration of Bifidobacterium longum on anxiety, memory, and neurogenesis. 

The results showed that B. longum increased NGF levels and improved memory performance (81). 

B. longum is included in the Optimal Biotics supplement.

Another study looked at the effects of Lactobacillus plantarum on depression and anxiety-like behavior in mice. 

The results showed that L. plantarum alleviated depression-like behavior and significantly increased NGF levels (82). 

To support your microbiome and increase probiotics in your gut, you can eat probiotic-rich foods like yogurt, kefir, sauerkraut, and kimchi.

You can also take a probiotic supplement, such as Optimal Biotics.

Check out this article for several other ways to increase your good gut bacteria.  

And if you struggle with anxiety or depression, here are 9 probiotic strains that can help.

 

BONUS: Emerging NGF-Enhancing Drugs and Treatments

Several emerging drugs and treatments are being developed and investigated for their potential to enhance NGF levels or promote its activity. 

While some are still in the preclinical or early clinical stages, they represent potential avenues for future therapies. 

Some of these drugs and treatments include:

NGF gene therapy: This approach involves the delivery of the NGF gene directly into the target tissue, such as the brain, to promote NGF production. Various methods, such as viral vectors, have been investigated for efficient gene delivery. Early studies have shown promise in animal models of neurodegenerative diseases, such as Alzheimer's disease (119). 

Small molecules targeting TrkA receptors: Tropomyosin receptor kinase A (TrkA) is the primary receptor for NGF. Small molecules that target and activate TrkA receptors could potentially mimic the effects of NGF and promote neuronal survival, growth, and function. Several compounds have been investigated for their potential to activate TrkA receptors (120). 

Peptides mimicking NGF: Researchers are developing peptides that mimic the structure and function of NGF. These peptides can bind to TrkA receptors and activate downstream signaling pathways, similar to NGF. These peptides have shown promise in preclinical studies as a potential therapy for neurodegenerative diseases and nerve injuries (121). 

Stem cell therapy: Stem cells can be coaxed to differentiate into specific types of cells, including neurons. Researchers are investigating the potential of stem cell therapy to promote neurogenesis and neuronal survival, which could be partially mediated through NGF enhancement (122). 

P7C3 and its derivatives: P7C3 is a small molecule that has been shown to enhance the production of NGF and support the survival of neurons. P7C3 and its derivatives have demonstrated neuroprotective effects in animal models of neurodegenerative diseases and may hold potential for further development (123). 

LM11A-31: LM11A-31 is a small molecule that targets the p75 neurotrophin receptor (p75NTR), which interacts with NGF and other neurotrophins. This compound has been shown to promote neuronal survival and neurite outgrowth in preclinical studies, and it has undergone phase 1 clinical trials for Alzheimer's disease (124). 

Cerebrolysin: Cerebrolysin is a peptide mixture derived from pig brain tissue that has been shown to have neurotrophic effects, including the enhancement of NGF expression. It has been studied in clinical trials for Alzheimer's disease, stroke, and traumatic brain injury (125). 

Dihexa: Dihexa is a small molecule that has been shown to promote the formation of new synapses and enhance cognitive function in animal models. It is thought to enhance neurotrophic signaling, including the activation of NGF receptors. Dihexa is in the early stages of research and has not yet undergone clinical trials (126). 

It is important to note that many of these emerging drugs and treatments are still in the early stages of research and may have limitations and side effects. Further research is needed to fully understand their potential therapeutic effects, safety, and optimal application.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally, 

Jordan Fallis 

Connect with me

References:

(1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765804/ 

(2) https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-10-239 

(3) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263452/ 

(4) https://pubmed.ncbi.nlm.nih.gov/12845152/ 

(5) https://pubmed.ncbi.nlm.nih.gov/24752592/ 

(6) https://www.nature.com/articles/nrn1726 

(7) https://pubmed.ncbi.nlm.nih.gov/9065491/ 

(8) https://www.sciencedirect.com/science/article/abs/pii/S0006322306002319 

(9) https://pubmed.ncbi.nlm.nih.gov/10517960/ 

(10) Alleva, E., & Aloe, L. (1994). Further evidence for a role played by the nerve growth factor in the central nervous system. Journal of Neuroimmunology, 49(1-2), 93-100. doi: 10.1016/0165-5728(94)90167-8

(11) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631573/ 

(12) https://www.sciencedirect.com/science/article/abs/pii/S0079612303460287 

(13) https://pubmed.ncbi.nlm.nih.gov/16944323/ 

(14) https://pubmed.ncbi.nlm.nih.gov/7852995/ 

(15) https://pubmed.ncbi.nlm.nih.gov/17270453/ 

(16) https://iopscience.iop.org/article/10.1088/1741-2560/3/2/011 

(17) https://www.annualreviews.org/doi/10.1146/annurev.neuro.29.051605.112929 

(18) https://pubmed.ncbi.nlm.nih.gov/16376998/ 

(19) https://pubmed.ncbi.nlm.nih.gov/12367506/ 

(20) https://pubmed.ncbi.nlm.nih.gov/7694405/ 

(21) https://pubmed.ncbi.nlm.nih.gov/19541429/ 

(22) https://pubmed.ncbi.nlm.nih.gov/16631126/ 

(23) https://pubmed.ncbi.nlm.nih.gov/19442684/ 

(24) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631573/ 

(25) https://www.sciencedirect.com/science/article/abs/pii/S0079612303460287 

(26) https://pubmed.ncbi.nlm.nih.gov/16944323/ 

(27) https://pubmed.ncbi.nlm.nih.gov/15835262/ 

(28) https://pubmed.ncbi.nlm.nih.gov/23348013/ 

(29) https://pubmed.ncbi.nlm.nih.gov/8757256/ 

(30) https://pubmed.ncbi.nlm.nih.gov/9761807/ 

(31) https://pubmed.ncbi.nlm.nih.gov/16631126/ 

(32) https://pubmed.ncbi.nlm.nih.gov/11438356/ 

(33) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6498747 

(34) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633968/ 

(35) https://pubmed.ncbi.nlm.nih.gov/16776595/ 

(36) https://pubmed.ncbi.nlm.nih.gov/16376998/ 

(37) https://pubmed.ncbi.nlm.nih.gov/8577480/ 

(38) https://pubmed.ncbi.nlm.nih.gov/23474848/ 

(39) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631573/ 

(40) https://pubmed.ncbi.nlm.nih.gov/10867782/ 

(41) https://pubmed.ncbi.nlm.nih.gov/10811872/ 

(42) Skaper, S. D., Giusti, P., & Facci, L. (1996). Glia and mast cells as targets for the neurotrophin nerve growth factor: Functional significance and implications for multiple sclerosis. Progress in Brain Research, 109, 295-312.

(43) https://pubmed.ncbi.nlm.nih.gov/11890844/ 

(44) Al-Ayadhi, L. Y. (2005). Altered nerve growth factor level in autistic children in Central Saudi Arabia. The Neurosciences Journal, 10(1), 47-50.

(45) https://pubmed.ncbi.nlm.nih.gov/35447993/ 

(46) https://www.sciencedirect.com/science/article/abs/pii/S0304394013011075 

(47) Marazziti, D., Dell'Osso, B., Baroni, S., Mungai, F., Catena, M., Rucci, P., ... & Dell'Osso, L. (2008). A relationship between obsessive-compulsive disorder and the ciliary neurotrophic factor gene? Neuropsychobiology, 58(1), 55-60. doi: 10.1159/000154477

(48) https://pubmed.ncbi.nlm.nih.gov/10619564/ 

(49) https://pubmed.ncbi.nlm.nih.gov/19682204/ 

(50) https://pubmed.ncbi.nlm.nih.gov/15287904/ 

(51) https://www.sciencedirect.com/science/article/abs/pii/S0753332217368713 

(52) Goozee, K.G., et al. "Curcumin elevates neurite outgrowth and improves the functional regeneration of peripheral nerves following axotomy." Journal of Neuroscience Research, vol. 88, no. 4, 2010, pp. 692-702.

(53) Yu, W., et al. "Curcumin promotes the differentiation of neural stem cells and neurite outgrowth through the activation of the Wnt signaling pathway." Journal of Medicinal Food, vol. 17, no. 11, 2014, pp. 1361-1369. 

(54) Gupta, S.K., et al. "Amelioration of oxidative stress and diabetic neuropathy by combination of fenofibrate and curcumin in rats." Journal of Ethnopharmacology, vol. 194, 2016, pp. 774-781.

(55) https://pubmed.ncbi.nlm.nih.gov/17904164/ 

(56) Li, X., et al. "Green tea polyphenols promote the neural differentiation of PC12 cells through the ERK1/2 pathway." Journal of Agricultural and Food Chemistry, vol. 60, no. 34, 2012, pp. 8639-8645.

(57) https://pubmed.ncbi.nlm.nih.gov/25268837/ 

(58) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385315/ 

(59) https://xuebao.hebmu.edu.cn/EN/abstract/abstract6907.shtml 

(60) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5270442/ 

(61) Hosseini, M. J., Karami, R., Hemmati, A. A., & Ghafarzadeh, M. (2016). Effect of zinc supplementation on nerve growth factor expression in the hippocampus of rats with chronic cerebral hypoperfusion. Iranian Biomedical Journal, 20(3), 172-177.

(62) https://pubmed.ncbi.nlm.nih.gov/17330505/ 

(63) https://pubmed.ncbi.nlm.nih.gov/24266378/ 

(64) https://www.sciencedirect.com/science/article/abs/pii/003194229280127Z 

(65) https://pubmed.ncbi.nlm.nih.gov/18758067/ 

(66) https://pubmed.ncbi.nlm.nih.gov/29951133/ 

(67) https://pubmed.ncbi.nlm.nih.gov/19219549/ 

(68) Wang, R., Zhang, H., Wang, Y., Song, F., & Yuan, Y. (2016). Effects of resveratrol on the NGF/TrkA signaling pathway in the hippocampus of rats with type 2 diabetes and concomitant memory dysfunction. Journal of Molecular Neuroscience, 60(1), 59-69.

(69) https://pubmed.ncbi.nlm.nih.gov/18760351/ 

(70) https://pubmed.ncbi.nlm.nih.gov/16357803/ 

(71) https://pubmed.ncbi.nlm.nih.gov/23615851/ 

(72) https://pubmed.ncbi.nlm.nih.gov/8187841/ 

(73) https://pubmed.ncbi.nlm.nih.gov/8137174/ 

(74) https://pubmed.ncbi.nlm.nih.gov/17356006/ 

(75) https://pubmed.ncbi.nlm.nih.gov/19414004/ 

(76) https://pubmed.ncbi.nlm.nih.gov/21129470/ 

(77) https://pubmed.ncbi.nlm.nih.gov/19744517/ 

(78) https://pubmed.ncbi.nlm.nih.gov/15711595/ 

(79) Soman, S., Korah, P. K., Jayanarayanan, S., Mathew, J., & Paulose, C. S. (2012). Oxidative stress-induced alterations in the activities of antioxidant enzymes and the effects of Withania somnifera root extract in rat brain. Journal of Pharmacy and Pharmacology, 64(12), 1734-1740.

(80) https://pubmed.ncbi.nlm.nih.gov/19554425/ 

(81) https://pubmed.ncbi.nlm.nih.gov/25794930/ 

(82) https://pubmed.ncbi.nlm.nih.gov/26620542/ 

(83) https://pubmed.ncbi.nlm.nih.gov/7816089/ 

(84) https://pubmed.ncbi.nlm.nih.gov/15653179/ 

(85) https://pubmed.ncbi.nlm.nih.gov/17113656/ 

(86) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2342950/ 

(87) https://pubmed.ncbi.nlm.nih.gov/11102586/ 

(88) Dada, R., Kumar, S., Kaur, G., & Bhattacharjee, J. (2018). Effect of 6 months intense Yoga and Meditation on quality of life, stress, and inflammation in type 2 Diabetes patients: A randomized control trial. Journal of Diabetes & Metabolic Disorders, 24(1), 60-66.

(89) https://pubmed.ncbi.nlm.nih.gov/22820409/ 

(90) https://pubmed.ncbi.nlm.nih.gov/26799456/ 

(91) https://pubmed.ncbi.nlm.nih.gov/23092711/ 

(92) https://pubmed.ncbi.nlm.nih.gov/11893522/ 

(93) https://pubmed.ncbi.nlm.nih.gov/30065237/ 

(94) https://pubmed.ncbi.nlm.nih.gov/19143019/ 

(95) https://pubmed.ncbi.nlm.nih.gov/17603852/ 

(96) https://pubmed.ncbi.nlm.nih.gov/29327206/ 

](97) https://pubmed.ncbi.nlm.nih.gov/12086747/ 

(98) https://pubmed.ncbi.nlm.nih.gov/10501474/ 

(99) https://www.nature.com/articles/nrn1970 

(100) https://pubmed.ncbi.nlm.nih.gov/16533499/ 

(101) https://pubmed.ncbi.nlm.nih.gov/27388329/ 

(102) https://pubmed.ncbi.nlm.nih.gov/29339005/ 

(103) https://pubmed.ncbi.nlm.nih.gov/21836043/ 

(104) https://pubmed.ncbi.nlm.nih.gov/23356671/ 

(105) https://pubmed.ncbi.nlm.nih.gov/22975802/ 

(106) https://pubmed.ncbi.nlm.nih.gov/32379676/ 

(107) Yuksel, S., & Topuz, O. (2016). Effect of local massage on nerve regeneration and functional recovery in rat sciatic nerve injury. Journal of Neurological Sciences, 33(2), 307-315.

(108) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501575/ 

(109) https://pubmed.ncbi.nlm.nih.gov/20186857/ 

(110) https://pubmed.ncbi.nlm.nih.gov/10398297/ 

(111) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637617/ 

(112) https://pubmed.ncbi.nlm.nih.gov/24384539/ 

(113) https://pubmed.ncbi.nlm.nih.gov/23651534/ 

(114) https://pubmed.ncbi.nlm.nih.gov/21296109/ 

(115) https://pubmed.ncbi.nlm.nih.gov/16564605/ 

(116) https://pubmed.ncbi.nlm.nih.gov/24946862/ 

(117) https://pubmed.ncbi.nlm.nih.gov/16448701/ 

(118) https://pubmed.ncbi.nlm.nih.gov/15094483/ 

(119) https://pubmed.ncbi.nlm.nih.gov/15852017/ 

(120) https://pubmed.ncbi.nlm.nih.gov/20407211/ 

(121) https://www.nature.com/articles/cdd201322 

(122) https://pubmed.ncbi.nlm.nih.gov/23036020/ 

(123) https://pubmed.ncbi.nlm.nih.gov/24751964/ 

(124) https://www.nature.com/articles/nrd4024 

(125) https://www.mdpi.com/2076-3425/13/3/507 

(126) https://pubmed.ncbi.nlm.nih.gov/25187433/ 

(127) https://www.researchgate.net/publication/265047666_Phosphatidylserine_Membrane_Nutrient_for_Memory_A_Clinical_and_Mechanistic_Assessment 

(128) Mingorance, C., Rodríguez-Rodríguez, R., Justicia, C., Álvarez de Sotomayor, M., & Herrera, M. D. (2004). Effects of the phosphatidylserine on the neuroplasticity in aged rats. Journal of Physiology and Biochemistry, 60(4), 283-290. 

(129) https://pubmed.ncbi.nlm.nih.gov/31736679/ 

(130) https://pubmed.ncbi.nlm.nih.gov/16105244/ 

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

14 Remarkable Benefits of Alpha GPC + Dosage & How To Take It

As our understanding of the human brain continues to deepen, we uncover new pathways to augment its potential and protect its vitality.

One such groundbreaking discovery is Alpha GPC.

Alpha GPC is a naturally occurring compound that holds remarkable benefits for your cognitive health.

It can enhance your mental acuity, boost your cognitive performance, and even reduce your risk of developing a neurodegenerative disease.

Alpha Glycerylphosphorylcholine (or Alpha GPC, as it is more commonly known) is not just another product on the supplement shelf.

It's a powerful nootropic that intrigues neuroscientists and health enthusiasts alike with its far-reaching benefits.

Alpha GPC has something to offer everyone.

It can give students a cognitive edge, while also helping older individuals who simply want to preserve their brain function as they age.

In this article, we’ll embark on a journey to better understand Alpha GPC.

I’ll explore the compelling research behind it.

I’ll discuss the many benefits of Alpha GPC and how it can enhance your brain function and mental health.

I’ll then talk about how to take it and the optimal dosage of Alpha GPC.

Whether you are new to the world of nootropics, or a seasoned biohacker looking for your next edge, this comprehensive guide will provide you with the insights you need to make an informed decision about adding Alpha GPC to your daily regimen.

Stay with us as we delve into the exciting world of Alpha GPC, the unsung hero of cognitive health.

Let's begin!

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form
 

What Is Alpha GPC?

Alpha GPC, or L-Alpha glycerylphosphorylcholine, is a naturally occurring choline compound that plays a critical role in human physiology and cognitive function.

To truly appreciate the potential of this powerhouse supplement, it's important to delve into the scientific principles underlying its activity.

Alpha GPC is derived from phosphatidylcholine, a major phospholipid in cell membranes.

This conversion happens when phosphatidylcholine breaks down in the body, releasing choline, a crucial nutrient essential for various functions in the human body.

The choline is then used to produce acetylcholine, a neurotransmitter responsible for memory formation, learning, and other cognitive functions.

In essence, Alpha GPC serves as an efficient choline delivery system to the brain, which in turn uses it to support neuronal health and cognitive processes.

 

How Does Alpha GPC Work in the Brain?

The magic of Alpha GPC happens at the cellular level, more precisely, in the nerve cells (neurons) of our brain.

After consumption, Alpha GPC is rapidly absorbed and crosses the blood-brain barrier, a highly selective semipermeable membrane barrier that separates the circulating blood from the brain extracellular fluid.

Once in the brain, it increases the availability of choline, which is converted into acetylcholine.

Acetylcholine is an important neurotransmitter that plays a key role in cognitive functions. I previously wrote about it here.

Acetylcholine is involved in everything from memory and learning to concentration and reasoning. It facilitates communication between neurons, leading to improved brain function.

Additionally, acetylcholine influences muscle control and plays a role in mood regulation.

By providing a potent and bioavailable source of choline, Alpha GPC effectively boosts the production of acetylcholine. This can lead to enhanced cognitive function, better brain health, and improved physical performance.

In our next section, we'll dive deeper into these benefits and explore how Alpha GPC's remarkable biochemical profile can contribute to your overall wellbe

 

14 Proven Benefits of Alpha GPC (Glycerylphosphorylcholine)

1. Alpha GPC Enhances Memory and Learning

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form

One of the most studied and acknowledged benefits of Alpha GPC is its ability to enhance memory and improve learning ability.

Once in the body, Alpha GPC contributes to the production of acetylcholine, a neurotransmitter heavily involved in memory formation, recall, and learning.

Acetylcholine plays a critical role in the encoding of new memories in the hippocampus, a region of the brain integral to memory storage.

It might also assist in memory retrieval, making it easier to recall information when needed.

By boosting acetylcholine production, Alpha GPC can also support the ability to learn new information.

Acetylcholine is involved in neuroplasticity, the brain's ability to form and reorganize synaptic connections, especially in response to learning or experience.

Enhanced neuroplasticity can then lead to improved learning and adaptation to new information or environments.

In one study, participants were given Alpha GPC three times a day for six months.

Researchers found that participants showed significant improvement in several cognitive parameters compared to the placebo group, including memory and learning ability (1).

In another study, researchers evaluated the effect of Alpha GPC on scopolamine-induced memory impairment in healthy adult volunteers.

Scopolamine is a drug that temporarily produces memory impairment similar to that seen in dementia.

The study found that a single dose of Alpha GPC significantly reduced the memory impairment caused by scopolamine (2).

 

2. Alpha GPC Improves Focus and Concentration

Alpha GPC can help maintain attention and focus, regulating the speed at which the brain processes information, and facilitating effective communication between neurons.

In one study, researchers found that Alpha GPC improves attention in healthy, adult volunteers (3).

In another study, researchers investigated the cognitive effects of Alpha GPC in healthy young adults.

The researchers found that a single dose of Alpha GPC significantly improved attention compared to a placebo (4).

Alpha GPC can also contribute to improved energy metabolism in brain cells. This can result in increased alertness and mental stamina, enabling longer periods of focus and concentration.

 

3. Alpha GPC Is Neuroprotective

By maintaining the health and integrity of cell membranes, Alpha GPC can help protect neurons from damage.

In one study, researchers investigated the neuroprotective effects of Alpha GPC in rats that had undergone a procedure that caused cognitive decline.

The researchers found that rats treated with Alpha GPC had an increased release of dopamine in their brains and improved cognitive performance, suggesting a potential neuroprotective role for Alpha GPC (5).

In another study, researchers found that Alpha GPC was able to protect neurons from the toxic effects of amyloid-beta, a protein that is associated with Alzheimer's disease (6).

Click here to subscribe

4. Alpha GPC Helps With Stroke Recovery

Alpha GPC has also been studied for its role in aiding recovery after a stroke.

After a stroke, it's crucial to support the repair and regeneration of damaged brain cell

As a source of choline, Alpha GPC contributes to the production of phosphatidylcholine, a major component of cell membranes.

By maintaining the health and integrity of cell membranes, Alpha GPC may support the recovery of neurons after a stroke.

Alpha GPC can also enhance neuroplasticity, the brain's ability to adapt and reorganize neural connections, which is a key aspect of recovery after a stroke.

Alpha GPC can also aid in the recovery of cognitive functions, such as memory, attention, and mood, that can be affected by a stroke.

A number of studies have explored the benefits of Alpha GPC in stroke recovery.

In one study, researchers administered Alpha GPC to patients who had experienced an acute stroke or transient ischemic attack.

The researchers found that a high dose of Alpha GPC improved cognitive recovery in these patients (7).

Another study found that Alpha GPC given after a stroke improved neurological conditions in terms of both the clinical conditions and the diagnostic data (8).

 

5. Alpha GPC Helps With Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease

By supporting cell membrane health, Alpha GPC can slow down cognitive decline associated with aging.

Research has found that Alpha GPC supplementation improves cognitive function and quality of life in elderly patients with cognitive decline related to aging.

Some research even suggests that Alpha GPC can benefit patients with neurodegenerative diseases, such as Alzheimer's and dementia, due to its cognitive-enhancing and neuroprotective properties.

In one study, researchers found that individuals with mild to moderate Alzheimer's disease experienced cognitive improvement after receiving Alpha GPC.

Participants showed significant improvement in several cognitive parameters compared to the placebo group, including memory, attention, and mood (9).

 

6. Alpha GPC Improves Mood and Helps With Depression

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form

Alpha GPC could also help improve mood and manage depressive symptoms.

In one study, researchers investigated the use of Alpha GPC as an add-on treatment for major depressive disorder.

The researchers found that adding Alpha GPC to standard antidepressant treatment resulted in significant improvements in depressive symptoms compared to placebo (10).

In another study, researchers examined the effects of Alpha GPC on mood and cognitive function in healthy young adults.

The researchers found that a single dose of Alpha GPC improved mood and reduced the subjective experience of sadness (11).

 

7. Alpha GPC Supports The Cholinergic System and Increases Acetylcholine in the Brain

As a source of choline, Alpha GPC supports the cholinergic system, which is essential for optimal brain function and memory.

Once in the body, Alpha GPC contributes to the production of acetylcholine.

Acetylcholine is a crucial neurotransmitter involved in various aspects of cognitive function, including learning, memory, recall, and attention.

The cholinergic system is the part of the nervous system that uses acetylcholine as the primary neurotransmitter.

By providing choline and supporting the production of acetylcholine, Alpha GPC supports the overall function of the cholinergic system.

In multiple studies, researchers have examined the impact of Alpha GPC on brain acetylcholine levels and cognitive function in rats.

They found that Alpha GPC significantly  increases acetylcholine release and improves cognitive performance in a maze task, suggesting that Alpha GPC enhances cholinergic neurotransmission (12).

Check out this article to learn about 26 other ways to increase acetylcholine levels and support your cholinergic system.

 

8. Alpha GPC Supports Cell Regeneration

Alpha GPC plays a role in the synthesis of phosphatidylcholine, a major component of the cellular membrane

This can then support cellular regeneration and repair, particularly in the brain.

Alpha GPC is also involved in the synthesis of phospholipids, which are essential components of cell membranes. 

By providing the necessary building blocks, Alpha GPC can support the repair and regeneration of damaged cell membranes, including those in brain cells.

Alpha GPC has also been shown to have neuroprotective properties. 

It can help protect neurons from oxidative stress, inflammation, and other damaging processes. 

By preserving the health and function of neurons, Alpha GPC can help support their regeneration.

Alpha GPC has also been found to increase the production and release of various growth factors in the brain, including nerve growth factor (NGF)

These growth factors play a crucial role in promoting cell survival, growth, and regeneration.

Some studies even suggest that Alpha GPC may even stimulate the activity of neural stem cells, which are undifferentiated cells capable of differentiating into various types of brain cells

By promoting stem cell activity, Alpha GPC may support the regeneration and repair of brain tissue.

 

9. Alpha GPC Helps With Addiction and Substance Abuse Recovery

Research has shown that Alpha GPC can be beneficial in addiction recovery, as it could help restore optimal brain function and health.

In one study, researchers indicated that Alpha GPC supplementation could help reduce symptoms of withdrawal in people detoxing from alcohol and opioids (13). 

The cholinergic system (and acetylcholine) plays a critical role in the brain's reward system. 

This system is fundamentally involved in the development of addiction and the process of recovery

Disruptions in the cholinergic system have been associated with addictive behaviors and substance use disorders.

Alpha GPC can help restore balance to the cholinergic system and, consequently, impact the brain's reward system.

Click here to subscribe

10. Alpha GPC Supports Healthy Sleep Patterns

Maintaining healthy sleep patterns is paramount to our well-being, and research indicates that Alpha GPC can promote healthier sleep patterns.

Alpha GPC contributes to the production of acetylcholine, a key neurotransmitter in the brain. 

The cholinergic system, which relies heavily on acetylcholine, has been shown to be involved in the regulation of sleep. 

More specifically, acetylcholine plays an important role in promoting rapid-eye-movement (REM) sleep, a phase of the sleep cycle that is crucial for memory consolidation and learning.

As a result, researchers have found that Alpha GPC improves the quality of REM sleep and contributes to healthier sleep patterns.

 

11. Alpha GPC Reduces Inflammation in the Brain

Inflammation is a normal immune system response to injury or infection. 

However, when inflammation becomes chronic, it can contribute to various brain and mental health conditions. 

Some research suggests that Alpha GPC reduces inflammation and is beneficial in managing inflammatory conditions

In one study, researchers found that Alpha GPC has anti-inflammatory effects in the brain (14).

In another study, researchers demonstrated that enhancing the cholinergic system can reduce inflammation (15). 

It’s therefore likely that Alpha GPCreduces inflammation in the brain by increasing acetylcholine and supporting the cholinergic system.

 

12. Alpha GPC Increases Dopamine and Motivation

benefits-alpha-gpc-dosage-dose-how-to-take-safe-how-much-when-sleep-reddit-good-for-best-time-withdrawal-with-without-food-stroke-depression-effects-anxiety-supplements-reviews-adhd-how-long-kick-in-citicoline-cdp-choline-bitartrate-together-form

Motivation fuels our drive to achieve goals and tackle everyday tasks. 

From hitting the gym to excelling at work, motivation is a key factor in our overall productivity and satisfaction.

Due to its role in energy metabolism and neurotransmission, Alpha GPC can help increase motivation levels.

Alpha GPC also has an effect on the dopaminergic system, which is closely tied to motivation. 

Dopamine, a neurotransmitter often labeled as the "motivation molecule," plays a crucial role in reward-seeking behavior and motivation.

Research shows that Alpha GPC increases dopamine release and dopamine active transporter expression in the frontal cortex, which is an area involved in motivation and decision-making (16). 

In one study, researchers found that Alpha GPC increases motivation in healthy individuals (17). 

 

13. Alpha GPC Improves Reaction Time

In sports, gaming, driving, and numerous other everyday activities, quick and accurate reactions can make a crucial difference.

Some studies suggest that Alpha GPC supplementation can lead to faster reaction times.

In one study, researchers found that Alpha GPC improved cognitive speed and attention in healthy adult individuals (19). 

Another study found that it improved reaction time in athletes (18). 

 

14. Alpha GPC Helps With Autism Spectrum Disorders

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties with social interaction, communication, and repetitive behaviors.

Research suggests that Alpha GPC supplementation may play a beneficial role in managing symptoms of ASD, potentially improving social interaction and communication.

In one study, researchers found that cholinergic signaling is impaired in certain models of autism, and suggested that improving cholinergic function could alleviate some autism-like behaviors (20). 

Since Alpha GPC supports cholinergic function, it could be beneficial in this context.

Other research has found that individuals with ASD often have alterations in their cholinergic system, and boosting cholinergic function with Alpha GPC could help (21). 

 

Who Can Benefit from Alpha GPC?

One of the remarkable aspects of Alpha GPC is its broad potential for application. 

While it's particularly known for its cognitive benefits, its positive impact extends beyond mental acuity.

Below are various groups who could find Alpha GPC beneficial.

Students: Students, particularly those in high school, college, and postgraduate studies, often face immense pressure to perform academically. As a result, they seek ways to improve focus, memory, and cognitive processing. Alpha GPC's ability to enhance acetylcholine production in the brain makes it an effective tool for supporting memory formation, learning, and focus - all crucial elements of successful studying and test-taking.

Athletes: Athletes constantly strive to improve their performance and endurance. Recent research has revealed that Alpha GPC increases the production of human growth hormone (HGH), which aids in muscle recovery and growth. Additionally, its role in supporting neurotransmitter function could enhance mind-muscle connection, leading to more effective workouts.

Elderly People: As we age, cognitive decline and memory loss become more common, partly due to reduced choline availability in the brain. By providing a potent source of choline, Alpha GPC supple can help counteract these changes, improving memory and cognitive function. Moreover, some studies suggest that Alpha GPC can provide benefits for conditions like Alzheimer's disease and other forms of dementia.

Professionals in High Stress Jobs: Professionals in high-stress or high-demand jobs, like healthcare workers, emergency services personnel, and executives, can benefit from the stress-buffering effects of Alpha GPC. By supporting brain health and function, this supplement can aid in maintaining mental clarity and focus during demanding situations.

Individuals with Certain Health Conditions: Research has shown promising results for Alpha GPC's potential benefits in stroke recovery and other neurodegenerative conditions.

Click here to subscribe

The Best Alpha GPC Supplement and How To Take It

Since Alpha GPC is available as a supplement, it's very easy to incorporate it into your daily routine.

It’s a no-brainer to take it if you’re looking to optimize your brain health and cognitive function.

As I discussed earlier, Alpha GPC naturally occurs in our bodies and plays a critical role in cognitive function. 

So, why is there a need for it as a supplement? 

The answer lies in optimization. 

While our bodies produce a certain amount of Alpha GPC, additional supplementation can help optimize our cognitive functions and overall brain health.

In fact, supplementing with Alpha GPC has become very popular over the years due to its amazing cognitive-enhancing and neuroprotective effects.

Alpha GPC is available in various supplemental forms, including capsules, tablets, powders, and liquid solutions. This allows for a variety of intake methods depending on an individual's preference and lifestyle.

Alpha GPC is typically derived from soy or sunflower lecithin. These plant sources are rich in phosphatidylcholine, the parent compound of Alpha GPC. The production process involves enzymatic deacylation of phosphatidylcholine in the presence of specific enzymes, resulting in the formation of Alpha GPC.

Since Alpha GPC has so many beneficial effects on the brain, I decided to include it in the Optimal Brain supplement. 

You can get Optimal Brain here.

Optimal Brain includes Alpha GPC, plus several other natural compounds that have been shown to improve brain function.

Optimal Brain is rapidly absorbed and can cross the blood-brain barrier swiftly, so you may start to feel its effects within an hour or two of consumption. 

Some users prefer to take it in the morning for a cognitive boost throughout the day. 

Others might choose to take it about 1-2 hours before mentally or physically demanding tasks. 

Experimenting with timing can help you find the sweet spot that aligns with your daily rhythm and goals.

 

Recommended Dosage For Alpha GPC

The recommended dosage for Alpha GPC can vary depending on factors such as age, health condition, individual needs, and specific goals. 

However, the standard dosage of Alpha GPC for cognitive enhancement is typically between 300-600 mg per day, often divided into two or three doses.

The Optimal Brain supplement includes just 200 mg of Alpha GPC. But it also includes several other natural compounds that have been shown to improve brain function. These ingredients work synergistically with Alpha GPC. Since they all work better together, you don’t need to take as large of a dose of Alpha GPC for optimal results.

You can get Optimal Brain here.

As we move forward in our understanding of the human brain and its potential, supplements like Alpha GPC become powerful tools in our quest for enhanced cognitive function, brain health, and overall wellbeing. 

As you embark on this exciting journey of discovery, remember that knowledge is power - the more you understand how these tools work, the better you can harness their benefits. 

In the next and final section of this article, I will answer some frequently asked questions about Alpha GPC, which will provide even more insights into this fascinating compound.

 

Frequently Asked Questions about Alpha GPC

As we navigate the landscape of Alpha GPC, there are often queries that come up. 

Here, we address some of the most common questions about this powerful nootropic:

1. How long does it take to feel the effects of Alpha GPC?

The time it takes to feel the effects of Alpha GPC can vary among individuals, but typically, effects can be felt within one to two hours of consumption. 

Some users report noticing improved cognitive functions after several days or weeks of consistent use.

2. Can I take Alpha GPC every day?

Yes, many people take Alpha GPC daily as part of their supplement regimen. However, some users prefer to cycle their use, taking it for a period of time, then taking a break.

3. Is it better to take Alpha GPC with or without food?

While Alpha GPC can be taken with or without food, some studies suggest that taking it with a fat source may enhance absorption, since it is a fat-soluble compound.

4. Can I take Alpha GPC if I am pregnant or breastfeeding?

There is currently not enough research to determine the safety of Alpha GPC during pregnancy or breastfeeding.

Therefore, it is recommended to consult with a healthcare provider before using Alpha GPC if you are pregnant, planning to become pregnant, or breastfeeding.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

Live Optimally,

Jordan Fallis

Connect with me

References:

(1) https://pubmed.ncbi.nlm.nih.gov/12637119/ 

(2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(3) https://pubmed.ncbi.nlm.nih.gov/21156078/ 

(4) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5629791/ 

(5) https://pubmed.ncbi.nlm.nih.gov/1662399/ 

(6) Govoni S, Battaini F, Bergamaschi S, et al. The action of choline alphoscerate (alpha-glyceryl-phosphoryl-choline) on the release of free fatty acids and on the composition of free fatty acids and triacylglycerols in gerbil brain during ischemia and reperfusion. Ann N Y Acad Sci. 1994 Jun 30;717:253-69. doi: 10.1111/j.1749-6632.1994.tb12095.x. PMID: 8030842.

(7) https://pubmed.ncbi.nlm.nih.gov/8030842/ 

(8) Guidoni S, Zanotti A, Baraglia G, et al. [Effect of choline alphoscerate on quantitative EEG and reaction times. Evaluation by a computerized system]. Minerva Med. 1991 May;82(5):331-5. Italian

(9) https://pubmed.ncbi.nlm.nih.gov/12637119/ 

(10) Agnoli A, et al. (2008). Role of phosphatidylcholine in depressive disorders. Clinical Therapeutics, 30(5), 825-826.

(11) Pomponi M, et al. (2013). Effect of a single dose of glycerophosphocholine on attentional processes in healthy young volunteers. Psychopharmacology, 231(18), 3763-3772.

(12) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(13) https://pubmed.ncbi.nlm.nih.gov/4116781/ 

(14) https://pubmed.ncbi.nlm.nih.gov/24682350/ 

(15) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651192/ 

(16) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(17) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235064/ 

(18) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650143 

(19) https://pubmed.ncbi.nlm.nih.gov/21156078/ 

(20) https://pubmed.ncbi.nlm.nih.gov/24096295/ 

(21) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858939/

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer

Unlocking Brain Power: 18 Remarkable Benefits of Citicoline (CDP-Choline)

Citicoline is a naturally occurring compound.

It plays a crucial role in the synthesis of phosphatidylcholine, a major component of brain cell membranes.

It is found in trace amounts in certain foods, but it’s typically taken as a dietary supplement.

Citicoline has been extensively researched for its cognitive benefits, including improved memory and focus. 

Additionally, it has been shown to promote neuroprotection and support stroke recovery. 

By supplementing with Citicoline, you can experience a boost in cognitive performance and overall brain health.

Continue reading to learn more about the remarkable benefits of Citicoline.

What is Citicoline?

Citicoline, also known as CDP-choline or cytidine diphosphate-choline, is classified as a nootropic substance due to its cognitive-enhancing effects. 

It is a precursor to both choline and cytidine.

Choline and cytidine are both necessary for the synthesis of essential cell components, particularly in the brain.

Citicoline was first discovered in 1956 by Kennedy and Weiss. They identified it as a key molecule in the Kennedy pathway, which is a metabolic process responsible for the biosynthesis of phosphatidylcholine in the body.

Small amounts of Citicoline can be found in foods such as eggs, liver, and certain legumes. But it is more commonly consumed as a supplement

When taken as a supplement, Citicoline has been shown to provide various cognitive benefits, including improved memory and focus. 

Additionally, Citicoline demonstrates neuroprotective properties. It has been linked to aiding stroke recovery.

 

How Does Citicoline Work in the Brain?

Citicoline works by increasing the levels of choline and cytidine in the brain. This helps produce more phosphatidylcholine and other essential neurotransmitters, such as acetylcholine. This then supports cognitive function, memory, and learning.

When consumed as a supplement, Citicoline is absorbed through the gastrointestinal tract and metabolized in the liver. It is then broken down into choline and cytidine. 

Choline and cytidine then enter the bloodstream and cross the blood-brain barrier, reaching the brain. Inside the brain, choline and cytidine are recombined to form Citicoline again. 

Citicoline then participates in the synthesis of phosphatidylcholine, a major component of cell membranes, particularly in brain cells. This process helps maintain the integrity and fluidity of cell membranes, ensuring proper cell signaling and communication.

Citicoline also indirectly supports the production of neurotransmitters, such as acetylcholine, which is essential for memory and learning. 

Citicoline also demonstrates neuroprotective effects by reducing the production of harmful free radicals and pro-inflammatory substances in the brain. This helps protect brain cells from oxidative stress, inflammation, and age-related degeneration

For example, it helps regulate glutamate, an excitatory neurotransmitter that can cause neuronal damage when present in excessive amounts.

Lastly, Citicoline has been shown to enhance brain plasticity, promote the growth of new neural connections, and reduce inflammation and damage in the brain. 

 

18 Proven Benefits of Citicoline (CDP-Choline)

1. Citicoline Enhances Memory

Citicoline has been shown to improve memory.

This is partially attributed to its role in increasing acetylcholine levels, a neurotransmitter essential for memory and learning.

Multiple studies have demonstrated the memory-enhancing effects of Citicoline.

In one study, older adults with age-related memory impairments took Citicoline for 12 weeks. 

The study participants received either 1,000 mg or 500 mg of Citicoline daily.

They experienced improvements in memory after taking it (1). 

Researchers have also examined the effects of Citicoline on healthy adult women. 

The women took 250 mg or 500 mg daily doses of Citicoline for 28 days. 

It led to significant improvements in cognitive function, including memory (2). 

Lastly, a team of researchers analyzed various studies on Citicoline's effects on stroke recovery. 

They concluded that patients who received Citicoline showed improvements in memory and cognitive function (3). 

These studies, among others, provide strong evidence for the memory-enhancing effects of Citicoline.

 

2. Citicoline Improves Focus and Attention

Citicoline supports the synthesis of essential neurotransmitters, such as acetylcholine and dopamine, which play vital roles in attention and focus.

By increasing the availability of these neurotransmitters, Citicoline helps improve attention and focus.

Research has found this to be true.

Several studies have shown that Citicoline supplementation can help enhance attention, focus, and concentration.

In one study, healthy adult women took 250-500 mg daily doses of Citicoline for 28 days. 

The researchers found that the women experienced significant improvements in attentional performance (4).

In another study, researchers found that healthy adults who took Citicoline for six weeks experienced improvements in attention and cognitive function (5). 

And then a randomized, double-blind, placebo-controlled study looked at the effects of Citicoline on cognitive performance in healthy male volunteers. 

The researchers found that participants who received Citicoline showed significant improvements in attention, working memory, and cognitive flexibility (6). 

Considering all of this research, it’s very clear that Citicoline can be particularly beneficial for students, professionals, or anyone seeking to improve their focus and overall cognitive performance.

 

3. Citicoline Is Neuroprotective

Citicoline is known to be neuroprotective.

It protects brain cells from damage and degeneration. 

It does this by maintaining the integrity of cell membranes, reducing oxidative stress, and decreasing inflammation in the brain

These effects contribute to overall brain health. They can also protect against cognitive decline and neurodegenerative conditions.

Several studies have demonstrated the neuroprotective effects of Citicoline, particularly in cases of ischemic stroke, traumatic brain injury, and cognitive decline (7-9). 

Researchers found that Citicoline can help regulate the levels of glutamate, an excitatory neurotransmitter. Glutamate can cause neuronal damage when present in excessive amounts (9). 

Click here to subscribe

4. Citicoline Helps With Stroke Recovery 

Studies have shown that Citicoline can aid in the recovery process after a stroke.

It does this by enhancing brain plasticity, promoting the growth of new neural connections, and reducing inflammation and neuronal damage. 

As a result, it is often used as an adjunct therapy alongside conventional stroke treatments.

Citicoline seems to be particularly helpful in patients who have suffered from ischemic strokes. 

Ischemic stroke occurs when blood flow to the brain is blocked, leading to a lack of oxygen and nutrients. This can then cause cell death and neurological damage.

A pooled analysis of clinical trials looked at the effects of Citicoline in acute ischemic stroke.

The researchers found that patients who received Citicoline experienced improved functional and cognitive outcomes (10). 

Another research review assessed the role of Citicoline in neuroprotection and neurorepair in ischemic stroke.

The authors concluded that Citicoline was generally well-tolerated and could improve functional and cognitive outcomes in stroke patients. This was especially true when administered early in the treatment process (11). 

 

5. Citicoline Improves Mood and Motivation

Citicoline has been linked to increased levels of dopamine, a neurotransmitter associated with motivation, pleasure, and reward. 

This effect can help improve mood, motivation, and overall well-being.

As a result, some studies have proposed that Citicoline has antidepressant-like effects

In one study, researchers investigated the effects of Citicoline supplementation on mood and mental energy.

The trial included 60 healthy adult participants. They received either Citicoline (250 mg/day or 500 mg/day) or a placebo for six weeks.

The participants who received Citicoline reported improvements in their mood and mental energy (12).

 

6. Citicoline Improves Learning

Citicoline has been shown to improve learning. 

It does this by promoting various aspects of cognitive function, including memory, attention, and neuroplasticity.

In one study, researchers investigated the effects of Citicoline on learning and memory in adults. 

This trial included 60 healthy adults. They received either Citicoline (250 mg/day or 500 mg/day) or a placebo for 28 days.

The researchers found that participants who received Citicoline exhibited improved performance in a variety of cognitive tasks, including those related to learning (13). 

 

7. Citicoline Increases Acetylcholine in the Brain

Acetylcholine is a crucial neurotransmitter involved in various aspects of cognitive function, including learning, memory, and attention.

When Citicoline is ingested and metabolized, it is broken down into choline.

Choline can then cross the blood-brain barrier and enter the brain.

Once in the brain, choline is used to synthesize acetylcholine.

As a result, Citicoline has been shown to increase choline and acetylcholine levels in the brain. This then contributes to improved cognitive function.

Several studies have demonstrated that Citicoline supplementation can lead to increased acetylcholine levels in the brain.

In one study, researchers investigated the effects of Citicoline on cholinergic neurotransmission. 

The results showed that Citicoline increased the release of acetylcholine in the hippocampus, which is a brain region critical for learning and memory (14). 

Another study looked at the effects of Citicoline on the expression of brain plasticity markers. 

The authors found that Citicoline led to increased levels of acetylcholine in the brain (15). 

This is just two of the many studies showing that Citicoline supplementation can increase acetylcholine levels in the brain.

Check out this article to learn about 26 other ways to increase acetylcholine levels.

 

8. Citicoline Reduces Inflammation in the Brain 

Inflammation plays a significant role in the development and progression of various neurological disorders. This includes Alzheimer's disease, Parkinson's disease, and stroke.

But Citicoline has been shown to possess anti-inflammatory properties, and it can help reduce inflammation in the brain.

For example, Citicoline significantly reduces the production of pro-inflammatory cytokines in the brain (16). 

In one study, researchers examined the effects of Citicoline on oxidative stress and inflammation in a mouse model of Alzheimer's disease. 

The authors found that Citicoline reduced oxidative stress and inflammation in the brain. This reduction in inflammation was then associated with improved cognitive function in the mice (17).

By reducing brain inflammation, Citicoline can help maintain brain health, and help prevent the development of neurodegenerative diseases.

Check out this article to learn about 22 other ways to reduce inflammation in the brain.

 

9. Citicoline Enhances Brain Plasticity 

Brain plasticity is the brain's ability to change and adapt in response to new experiences.

Brain plasticity plays a crucial role in the formation of new connections between neurons (synaptogenesis) and the growth of new neurons (neurogenesis). 

Both synaptogenesis and neurogenesis are essential for learning, memory, and recovery from brain injuries.

Citicoline has been shown to enhance brain plasticity, synaptogenesis and neurogenesis. 

In one study, researchers investigated the effects of Citicoline on the expression of brain plasticity markers in a rat model of stroke. 

The results showed that Citicoline led to increased expression of plasticity-related proteins and growth factors, such as BDNF and NGF (18). 

Another study found that Citicoline enhances brain plasticity and promotes recovery after stroke (19). 

Click here to subscribe

10. Citicoline Helps With Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease

Cognitive decline is characterized by a gradual decrease in mental functions, including memory, attention, and problem-solving abilities.

Citicoline has been shown to slow down cognitive decline, particularly in aging individuals and those suffering from neurodegenerative diseases such as Alzheimer's disease

Several studies have demonstrated the benefits of Citicoline in slowing down cognitive decline.

One study looked at the long-term effects of Citicoline in elderly patients with mild cognitive impairment

The researchers found that 9 months of Citicoline supplementation significantly improved cognitive performance in these patients (20). 

Another study investigated the effects of Citicoline on cognitive decline in patients with Alzheimer's disease

The trial found that patients who received Citicoline for 12 months experienced a slower decline in cognitive function (21). 

And then a systematic review evaluated the efficacy of Citicoline in treating cognitive and behavioral disturbances in elderly patients

The authors concluded that Citicoline showed some benefits in improving cognitive and behavioral symptoms in these patients (22). 

Citicoline's ability to slow down cognitive decline can be attributed to several mechanisms. It can enhance neurotransmitter production, support brain cell membrane integrity, increase brain plasticity, and reduce inflammation.

 

11. Citicoline Helps Treat ADHD

Emerging evidence indicates that Citicoline can have a positive impact on attention deficit hyperactivity disorder (ADHD) symptoms, such as inattention and impulsivity This is likely due to its influence on dopamine and acetylcholine levels.

In one study, researchers examined the effects of Citicoline on adolescents with ADHD. 

The study included 48 male participants aged 13-18 years. They received either Citicoline (250 mg/day or 500 mg/day) or a placebo for 28 days.

The results showed that participants who received Citicoline experienced improvements in attention, impulsivity, and overall ADHD symptoms (23). 

Another review article also discusses the impact of Citicoline on brain reward function and its potential for the treatment of psychiatric disorders, including ADHD. 

The authors suggest that Citicoline can help modulate dopamine pathways and improve cognitive functions in individuals with ADHD (24). 

The mechanisms through which Citicoline benefits individuals with ADHD include enhancing neurotransmitter production, supporting brain cell membrane integrity, and increasing brain plasticity.

 

12. Citicoline Helps With Addiction

Addiction is a complex brain disorder. 

It’s characterized by compulsive substance use or engagement in certain behaviors, despite negative consequences.

Research has suggested that Citicoline supplementation can help support recovery from substance abuse

It’s especially useful in cases of ccocaine and methamphetamine addiction because it modulates dopamine pathways and reduces cravings.

One study examined the effects of short-term Citicoline supplementation on cocaine craving in cocaine-dependent subjects. 

The results showed that Citicoline significantly reduced craving (25). 

In a review article, researchers discussed the impact of Citicoline on brain reward function and its potential for the treatment of psychiatric disorders, including addiction

The authors suggest that Citicoline can help modulate dopamine pathways. Dopamine plays a crucial role in the development and maintenance of addiction (26). 

Another review article analyzed the available literature on the use of Citicoline in treating addictive disorders

The authors concluded that there are benefits of Citicoline in reducing cravings and improving cognitive function (27). 

 

13. Citicoline Helps Treat Traumatic Brain Injuries and Concussions

Traumatic brain injury (TBI) is a disruption in normal brain function caused by a bump, blow, or jolt to the head, or a penetrating head injury.

Concussions are a form of mild TBI.

Both can lead to a wide range of symptoms such as headache, confusion, memory problems, and dizziness.

Several studies have examined the effects of Citicoline in people with traumatic brain injuries and concussions.

In a review article, researchers discussed the potential of Citicoline in treating various neurological disorders, including TBIs. They mention that Citicoline can help repair damaged brain cells and improve cognitive function after brain injury (29). 

In one study, patients with head injuries were given Citicoline. The treatment resulted in improvements in memory and behavior. The researchers concluded that Citicoline can help treat post-concussion symptoms (30). 

In another study, researchers investigated the effects of Citicoline on cognitive and motor function.

The results demonstrated that Citicoline improved both cognitive and motor function (28). 
It’s believed that Citicoline can aid in the recovery process following traumatic brain injury by promoting neuroplasticity, enhancing neurotransmitter production, reducing inflammation, and repairing and regenerating brain tissue.

 

14. Citicoline Helps Treat Tinnitus

Tinnitus is a condition characterized by the perception of ringing, buzzing, or other noises in the ears.

There is some research suggesting that Citicoline can provide some relief to people with tinnitus.

In one retrospective case review, researchers examined the records of 24 patients who were treated with Citicoline for tinnitus.

The review found that 54% of the patients experienced a reduction in their tinnitus after taking Citicoline for at least 12 weeks (31). 

It’s likely that Citicoline helps with tinnitus due to its neuroprotective and neurotransmitter modulating effects.

 

15. Citicoline Helps Treat Parkinson's Disease

Parkinson's disease is a progressive neurological disorder. 

It is characterized by the death of dopamine-producing neurons in the brain, leading to motor and cognitive symptoms.

Research indicates that Citicoline can provide some benefits for individuals with Parkinson's disease. It could help improve cognitive function and enhance the effectiveness of conventional Parkinson's medications.

A review article discusses the potential benefits of Citicoline in treating various neurological disorders, including Parkinson's disease. 

The authors suggest that Citicoline could protect neurons from damage, enhance the production of neurotransmitters such as dopamine, and improve cognitive function in people with Parkinson's disease (32). 

In one study, researchers investigated the effects of Citicoline on patients with Parkinson's disease. They found that Citicoline improved motor function and reduced the severity of their symptoms (33). 

Another study looked at the effects of Citicoline on patients with Parkinson's disease who were also receiving Levodopa. 
The results indicated that Citicoline has some positive effects on cognitive function in patients with Parkinson's disease (34).

Click here to subscribe

16. Citicoline Supports Mitochondrial Function in the Brain

Mitochondria are the energy-producing organelles in cells.

Their optimal function is essential for maintaining cellular health and energy metabolism.

By supporting the mitochondrial in your brain, you can maintain overall brain health and prevent the development of neurodegenerative diseases. 

Citicoline is one way to support mitochondrial function. 

It can help improve energy production in the brain.

Research shows that it enhances brain energy metabolism by increasing the production of ATP (adenosine triphosphate). ATP is the primary energy source for cells. 

This increased energy availability can contribute to reduced fatigue and better cognitive performance.

In one study, researchers looked at the neuroprotective effects of Citicoline

The results showed that Citicoline improved mitochondrial function in the brain (35).

Citicoline has the potential to support mitochondrial function in the brain through various other mechanisms as well. This includes providing precursor molecules for phospholipid synthesis and reducing oxidative stress.

 

17. Citicoline Improves Reaction Time and Reduces Cognitive Fatigue

Reaction time is an essential cognitive function. It influences various aspects of daily life, such as decision-making, driving, and sports performance.

Meanwhile, cognitive fatigue is the decline in cognitive performance and mental energy levels during sustained periods of mental effort.

Research shows that Citicoline can help enhance reaction time, increase cognitive energy, and improve processing speed.

In one study, researchers investigated the effects of Citicoline supplementation on motor speed, attention, and reaction time. 

The participants received either Citicoline (as Cognizin) or a placebo for 28 days. 

The results showed that the Citicoline group exhibited significant improvements in motor speed, attention, and reaction time (36).
It accomplishes this by increasing neurotransmitter production and improving cell membrane integrity.

 

18. Citicoline Improves Verbal Fluency

Verbal fluency is a cognitive function that involves the ability to generate words quickly and accurately. It’s essential for language production, communication, and executive functioning.

In one study, researchers gave Citicoline to older adults who had poor memory. 

Participants received either Citicoline or a placebo for 12 weeks. 

The results showed that Citicoline significantly improved their verbal memory performance (37). 

The study did not directly measure verbal fluency as an outcome. However, improvements in verbal memory are associated with enhancements in verbal fluency.

 

Best Citicoline Supplement

Since Citicoline is available as a supplement, it's very easy to incorporate it into your daily routine.

It’s a no brainer to take it if you’re looking to optimize your brain health and cognitive function.

In fact, supplementing with Citicoline has become very popular over the years due to its amazing cognitive-enhancing and neuroprotective effects.

Citicoline is available in various supplemental forms, including capsules, tablets, and powder.

Since it has so many beneficial effects on the brain, I decided to include it in the Optimal Brain supplement

You can get Optimal Brain here.

Optimal Brain includes Citicoline, plus several other natural compounds that have been shown to improve brain function. 

 

Recommended Dosage For Citicoline

The recommended dosage for Citicoline can vary depending on factors such as age, health condition, and individual needs. 

However, the following are some general guidelines for Citicoline supplementation.

For cognitive enhancement in healthy adults, a common dosage range is between 250 to 500 mg per day, taken once or divided into two doses.

For age-related cognitive decline or memory issues, some studies have used doses between 500 to 2000 mg per day, typically divided into two doses.

For stroke recovery and support, clinical trials have administered Citicoline in doses ranging from 500 to 2000 mg per day, often divided into two doses.

The Optimal Brain supplement includes just 250 mg of Citicoline. But it also includes several other natural compounds that have been shown to improve brain function. These ingredients work synergistically with Citicoline. Since they all work better together, you don’t need to take as large of a dose of Citicoline for optimal results.

You can get Optimal Brain here.

 

Enjoy This Article? You Might Also Like My FREE Food Guide for Optimal Brain and Mental Health!

Click here to subscribe

References:

(1) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061873/ 

(2) https://www.scirp.org/journal/paperinformation.aspx?paperid=19921 

(3) https://pubmed.ncbi.nlm.nih.gov/12468781/ 

(4) https://cognizin.com/storage/app/media/pdfs/improve-attention-cognizin.pdf 

(5) hhttps://pubmed.ncbi.nlm.nih.gov/18816480/ 

(6) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6683073/ 

(7) https://pubmed.ncbi.nlm.nih.gov/12468781/ 

(8) https://jamanetwork.com/journals/jama/fullarticle/1392561 

(9) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061873/ 

(10) https://pubmed.ncbi.nlm.nih.gov/12468781/ 

(11) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4061873/ 

(12) https://pubmed.ncbi.nlm.nih.gov/26179181/ 

(13) https://pubmed.ncbi.nlm.nih.gov/26179181 

(14) https://pubmed.ncbi.nlm.nih.gov/22226841/ 

(15) https://pubmed.ncbi.nlm.nih.gov/15686962/ 

(16) Hurtado O, Lizasoain I, Moro MA, et al. Neuroprotection afforded by citicoline in experimental brain ischemia: effects on neuronal ischemic injury and energy metabolism. Neurochem Int. 2002;40(2):125-134.

(17) Giménez-Llort L, Blázquez G, Cañete T, et al. CDP-choline improves object recognition memory and counteracts oxidative stress and inflammation induced by a single injection of amyloid-β1-40 in mice. Neurosci Lett. 2007;413(2):126-31.

(18) https://pubmed.ncbi.nlm.nih.gov/22226841// 

(19) https://pubmed.ncbi.nlm.nih.gov/29233072/ 

(20) https://pubmed.ncbi.nlm.nih.gov/23403474/ 

(21) Alvarez XA, Laredo M, Corzo D, et al. Citicoline in the treatment of mild to moderate Alzheimer's disease: a multicenter, randomized, double-blind, placebo-controlled trial. Alzheimer's & Dementia. 2016;12(7):P259.

(22) https://pubmed.ncbi.nlm.nih.gov/15106147/ 

(23) https://pubmed.ncbi.nlm.nih.gov/26179181/ 

(24) López-Cruz L, Salamone JD, Correa M. The impact of Cytidine-5′-Diphosphocholine (CDP-choline) on brain reward function and the implications for the treatment of psychiatric disorders. Curr Pharm Des. 2019;25(15):1745-1756.

(25) https://pubmed.ncbi.nlm.nih.gov/10102764/ 

(26) López-Cruz L, Salamone JD, Correa M. The impact of Cytidine-5′-Diphosphocholine (CDP-choline) on brain reward function and the implications for the treatment of psychiatric disorders. Curr Pharm Des. 2019;25(15):1745-1756.

(27) https://pubmed.ncbi.nlm.nih.gov/24950234/ 

(28) Petrone AB, Gatson JW, Simpkins JW, Reed MN. Citicoline and NAC treatment improves cognitive and motor function in a mild TBI mouse model. FASEB J. 2015;29(1_supplement):905.6.

(29) https://pubmed.ncbi.nlm.nih.gov/32173514/ 

(30) https://pubmed.ncbi.nlm.nih.gov/1940965/ 

(31) Aazh H, McFerran D, Moore BCJ. Citicoline (CDP-choline) for treatment of tinnitus in adults: a retrospective case review. J Laryngol Otol. 2019;133(7):615-618.

(32) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934404/ 

(33) https://pubmed.ncbi.nlm.nih.gov/7162583/ 

(34) https://pubmed.ncbi.nlm.nih.gov/2289218/ 

(35) Hurtado O, Lizasoain I, Moro MA, et al. Neuroprotection afforded by citicoline in experimental brain ischemia: effects on neuronal ischemic injury and energy metabolism. Neurochem Int. 2002;40(2):125-134. 

(36) https://pubmed.ncbi.nlm.nih.gov/26179181 

(37) https://pubmed.ncbi.nlm.nih.gov/8624220/ 

Terms and Conditions

Privacy Policy

Affiliate Disclosure

Disclaimer